Enkephalin
发表于 2025-3-21 19:09:05
书目名称Computational Methods and Function Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0232702<br><br> <br><br>书目名称Computational Methods and Function Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0232702<br><br> <br><br>
Default
发表于 2025-3-22 00:15:20
0075-8434 performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.978-3-540-52768-8978-3-540-47139-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
ABASH
发表于 2025-3-22 01:58:50
http://reply.papertrans.cn/24/2328/232702/232702_3.png
和平主义者
发表于 2025-3-22 06:46:34
https://doi.org/10.1007/978-3-658-24970-0, we derive sharp estimates of this type and determine the corresponding extremal polynomials. These Bernstein type inequalities are closely connected with certain constrained Chebyshev approximation problems on ellipses. We also present some new results for a weighted approximation problem of this type.
jovial
发表于 2025-3-22 08:51:44
http://reply.papertrans.cn/24/2328/232702/232702_5.png
路标
发表于 2025-3-22 13:29:18
http://reply.papertrans.cn/24/2328/232702/232702_6.png
路标
发表于 2025-3-22 20:07:02
On bernstein type inequalities and a weighted chebyshev approximation problem on ellipses,, we derive sharp estimates of this type and determine the corresponding extremal polynomials. These Bernstein type inequalities are closely connected with certain constrained Chebyshev approximation problems on ellipses. We also present some new results for a weighted approximation problem of this type.
内阁
发表于 2025-3-22 22:16:00
http://reply.papertrans.cn/24/2328/232702/232702_8.png
DIS
发表于 2025-3-23 04:51:58
http://reply.papertrans.cn/24/2328/232702/232702_9.png
白杨
发表于 2025-3-23 05:42:38
http://reply.papertrans.cn/24/2328/232702/232702_10.png