Anagram 发表于 2025-3-21 18:53:22
书目名称Computational Mechanics with Deep Learning影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0232678<br><br> <br><br>书目名称Computational Mechanics with Deep Learning读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0232678<br><br> <br><br>社团 发表于 2025-3-21 23:14:48
Lecture Notes on Numerical Methods in Engineering and Scienceshttp://image.papertrans.cn/c/image/232678.jpg巩固 发表于 2025-3-22 02:12:07
http://reply.papertrans.cn/24/2327/232678/232678_3.pngEncoding 发表于 2025-3-22 05:44:34
978-3-031-11849-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl诗集 发表于 2025-3-22 11:41:12
https://doi.org/10.1007/978-1-349-03123-8eural network including the error back propagation algorithm, Sect. . the convolutional neural networks, which have become the mainstream of deep learning in recent years, and Sect. . compares various methods for accelerating the training process. Finally, Sect. . describes regularization methods to组装 发表于 2025-3-22 13:41:09
http://reply.papertrans.cn/24/2327/232678/232678_6.png组装 发表于 2025-3-22 20:37:14
https://doi.org/10.1007/978-1-349-19936-5llision between objects is one of them. In this chapter, we study an application of deep learning to the contact search process, which is indispensable in contact and collision analysis. In particular, we focus on the contact between two smooth contact surfaces. In Sect. ., the basics of the contactcajole 发表于 2025-3-23 00:40:36
https://doi.org/10.1007/978-1-349-19936-5uss the application of deep learning to fluid dynamics problems. Section . describes the basic equations of fluid dynamics, Sect. . the basics of the finite difference method, one of the most popular methods for solving fluid dynamics problems, Sect. . a practical example of a two-dimensional fluidClassify 发表于 2025-3-23 02:55:04
Organizing and Working in a Study Group,cy of element stiffness matrices (Sect. .), finite element analysis using convolutional operations (Sect. .), fluid analysis using variational autoencoders (Sect. .), a zooming method using feedforward neural networks (Sect. .), and an application of physics-informed neural networks to solid mechaniAER 发表于 2025-3-23 07:32:40
https://doi.org/10.1007/978-981-16-2305-9mputational Mechanics with Deep Learning” from the perspective of programming. Section . describes some programs in the field of computational mechanics used in the Data Preparation Phase, including three topics discussed in the case study: the element stiffness matrix by using numerical quadrature