掺假 发表于 2025-3-25 05:23:02

http://reply.papertrans.cn/24/2323/232239/232239_21.png

Expertise 发表于 2025-3-25 09:16:53

http://reply.papertrans.cn/24/2323/232239/232239_22.png

Parameter 发表于 2025-3-25 15:43:32

Towards Learned Optimal ,-Space Sampling in Diffusion MRIious results, the present work consolidates the above strategies into a unified estimation framework, in which the optimization is carried out with respect to both estimation model and sampling design .. The proposed solution offers substantial improvements in the quality of signal estimation as wel

Infant 发表于 2025-3-25 16:31:09

http://reply.papertrans.cn/24/2323/232239/232239_24.png

CYN 发表于 2025-3-25 21:13:29

http://reply.papertrans.cn/24/2323/232239/232239_25.png

optional 发表于 2025-3-26 00:35:17

http://reply.papertrans.cn/24/2323/232239/232239_26.png

玉米 发表于 2025-3-26 07:02:08

http://reply.papertrans.cn/24/2323/232239/232239_27.png

bronchodilator 发表于 2025-3-26 11:17:04

Diffusion MRI Fiber Orientation Distribution Function Estimation Using Voxel-Wise Spherical U-Net the signals corresponding to individual fibers. We compared our model with another deep learning approach based on a 3D convolutional neural network and a state-of-the-art approach—multi-shell multi-tissue constrained spherical deconvolution, on real data from Human Connectome Project and synthetic

deciduous 发表于 2025-3-26 12:46:33

http://reply.papertrans.cn/24/2323/232239/232239_29.png

Jubilation 发表于 2025-3-26 18:10:10

DW-MRI Microstructure Model of Models Captured Via Single-Shell Bottleneck Deep Learningn to map a common basis among DW-MRI modeling approaches. We propose to capture a compact feature space in the form of a bottleneck that preserves common features to all methods and retrieve information from single shell DW-MRI. We train on 3D patches of 40 Human Connectome Project (HCP) subjects (.
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Computational Diffusion MRI; International MICCAI Noemi Gyori,Jana Hutter,Fan Zhang Conference proceedings 2021 The Editor(s) (if applicabl