culinary
发表于 2025-3-21 16:39:26
书目名称Computational Algebraic Number Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0232089<br><br> <br><br>
课程
发表于 2025-3-21 20:43:47
Topics from finite fields, and . a . of ., i.e. .. = 〈.〉. In general, arithmetic in . will be done by using two representations for its elements .:(i).,(ii)..Then addition and subtraction is done by the first, multiplication and division by the second representation. Thus all we need are two tables allowing to switch from on
travail
发表于 2025-3-22 03:46:22
Topics from the geometry of numbers,ater chapters. All results can be easily generalized to principal entire rings . For practical calculations, however, we need a Euclidean division algorithm in . for the computation of the greatest common divisor of two elements. Proofs of Lemmata 1.1, 1.2, 1.6, 1.7 and Theorem 1.3, 1.5 for principa
信徒
发表于 2025-3-22 05:29:40
Algebraic number fields,called the . of .. Clearly, ℚ(.) = . ≅ ℚ[.].(.)ℚ[.], and the successive powers l, .,…, .. form a basis of . over ℚ. For describing the arithmetic in . we will need the counterpart of the rational integers in . These integers of . are defined as those elements of . which are .., i.e. zeros of monic n
flamboyant
发表于 2025-3-22 09:19:18
Computation of an integral basis,… until .. = .. for some . ∈ ℤ.. Prom our considerations in chapter III we know that . is in ℤ. since that quotient equals the absolute value of the determinant of a transition matrix from a basis of .. to a basis of ... Prom chapters III, IV we recall that ∣d(.)∣ = .(..)., ∣..∣ = .(..).. Since with
争议的苹果
发表于 2025-3-22 16:14:51
http://reply.papertrans.cn/24/2321/232089/232089_6.png
争议的苹果
发表于 2025-3-22 19:47:08
Book 1993ion • Basic Arithmetic • Computation of an integral basis • Integral closure • Round-Two-Method • Round-Four-Method • Computation of the unit group • Dirichlet‘s unit theorem and a regulator bound • Two methods for computing r independent units • Fundamental unit computation • Computation of the cla
FER
发表于 2025-3-22 23:46:36
http://reply.papertrans.cn/24/2321/232089/232089_8.png
fringe
发表于 2025-3-23 03:18:47
Introduction,olving non-linear Diophantine equations, in factoring with the number field sieve and in carrying out numerical experiments in number fields. We illustrate their importance by two introductory examples.
grounded
发表于 2025-3-23 05:57:31
https://doi.org/10.1007/978-1-4615-7918-2olving non-linear Diophantine equations, in factoring with the number field sieve and in carrying out numerical experiments in number fields. We illustrate their importance by two introductory examples.