culinary 发表于 2025-3-21 16:39:26
书目名称Computational Algebraic Number Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0232089<br><br> <br><br>书目名称Computational Algebraic Number Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0232089<br><br> <br><br>课程 发表于 2025-3-21 20:43:47
Topics from finite fields, and . a . of ., i.e. .. = 〈.〉. In general, arithmetic in . will be done by using two representations for its elements .:(i).,(ii)..Then addition and subtraction is done by the first, multiplication and division by the second representation. Thus all we need are two tables allowing to switch from ontravail 发表于 2025-3-22 03:46:22
Topics from the geometry of numbers,ater chapters. All results can be easily generalized to principal entire rings . For practical calculations, however, we need a Euclidean division algorithm in . for the computation of the greatest common divisor of two elements. Proofs of Lemmata 1.1, 1.2, 1.6, 1.7 and Theorem 1.3, 1.5 for principa信徒 发表于 2025-3-22 05:29:40
Algebraic number fields,called the . of .. Clearly, ℚ(.) = . ≅ ℚ[.].(.)ℚ[.], and the successive powers l, .,…, .. form a basis of . over ℚ. For describing the arithmetic in . we will need the counterpart of the rational integers in . These integers of . are defined as those elements of . which are .., i.e. zeros of monic nflamboyant 发表于 2025-3-22 09:19:18
Computation of an integral basis,… until .. = .. for some . ∈ ℤ.. Prom our considerations in chapter III we know that . is in ℤ. since that quotient equals the absolute value of the determinant of a transition matrix from a basis of .. to a basis of ... Prom chapters III, IV we recall that ∣d(.)∣ = .(..)., ∣..∣ = .(..).. Since with争议的苹果 发表于 2025-3-22 16:14:51
http://reply.papertrans.cn/24/2321/232089/232089_6.png争议的苹果 发表于 2025-3-22 19:47:08
Book 1993ion • Basic Arithmetic • Computation of an integral basis • Integral closure • Round-Two-Method • Round-Four-Method • Computation of the unit group • Dirichlet‘s unit theorem and a regulator bound • Two methods for computing r independent units • Fundamental unit computation • Computation of the claFER 发表于 2025-3-22 23:46:36
http://reply.papertrans.cn/24/2321/232089/232089_8.pngfringe 发表于 2025-3-23 03:18:47
Introduction,olving non-linear Diophantine equations, in factoring with the number field sieve and in carrying out numerical experiments in number fields. We illustrate their importance by two introductory examples.grounded 发表于 2025-3-23 05:57:31
https://doi.org/10.1007/978-1-4615-7918-2olving non-linear Diophantine equations, in factoring with the number field sieve and in carrying out numerical experiments in number fields. We illustrate their importance by two introductory examples.