malfeasance 发表于 2025-3-21 19:57:40

书目名称Complex and Symplectic Geometry影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0231613<br><br>        <br><br>书目名称Complex and Symplectic Geometry读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0231613<br><br>        <br><br>

说明 发表于 2025-3-21 23:34:30

,Teichmüller Spaces of Generalized Hyperelliptic Manifolds,d components of Teichmüller space corresponding to Generalized Hyperelliptic Manifolds .. These are the quotients . = .∕. of a complex torus . by the free action of a finite group ., and they are also the Kähler classifying spaces for a certain class of Euclidean crystallographic groups ., the ones

威胁你 发表于 2025-3-22 00:55:06

http://reply.papertrans.cn/24/2317/231613/231613_3.png

投票 发表于 2025-3-22 07:15:07

http://reply.papertrans.cn/24/2317/231613/231613_4.png

JIBE 发表于 2025-3-22 11:43:23

http://reply.papertrans.cn/24/2317/231613/231613_5.png

intertwine 发表于 2025-3-22 15:26:39

http://reply.papertrans.cn/24/2317/231613/231613_6.png

intertwine 发表于 2025-3-22 18:43:43

Embedding of LCK Manifolds with Potential into Hopf Manifolds Using Riesz-Schauder Theorem,compact LCK manifold with potential can be embedded into a Hopf manifold, if its dimension is at least 3. We give a functional-analytic proof of this result based on Riesz-Schauder theorem and Montel theorem. We provide an alternative argument for compact complex surfaces, deducing the embedding the

erythema 发表于 2025-3-23 00:46:50

Generalized Geometry of Norden and Para Norden Manifolds,r we describe the class of such generalized complex structures defined by a pseudo Riemannian metric . and a .-symmetric operator . such that .. = ., .. These structures include the case of complex Norden manifolds for . = −1 and the case of Para Norden manifolds for . = 1 (Nannicini, J Geom Phys 99

壁画 发表于 2025-3-23 05:06:11

http://reply.papertrans.cn/24/2317/231613/231613_9.png

任命 发表于 2025-3-23 07:02:29

Cohomological Aspects on Complex and Symplectic Manifolds,s on the Bott-Chern and the Aeppli cohomology groups in both cases, since they represent useful tools in studying non Kähler geometry. We give an overview on the comparisons among the dimensions of the cohomology groups that can be defined and we show how we reach the .-lemma in complex geometry and
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Complex and Symplectic Geometry; Daniele Angella,Costantino Medori,Adriano Tomassin Book 2017 Springer International Publishing AG, a part