出租车 发表于 2025-3-21 20:09:29
书目名称Complex Non-Kähler Geometry影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0231512<br><br> <br><br>书目名称Complex Non-Kähler Geometry读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0231512<br><br> <br><br>mercenary 发表于 2025-3-21 20:21:10
Ulrike Fettke,Mona Bergmann,Elisabeth WackerVII surface. We included an Appendix in which we introduce several fundamental objects in non-Kählerian complex geometry (the Picard group of a compact complex manifold, the Gauduchon degree, the Kobayashi-Hitchin correspondence for line bundles, unitary flat line bundles), and we prove basic properties of these objects.Dedication 发表于 2025-3-22 04:21:57
http://reply.papertrans.cn/24/2316/231512/231512_3.png胆大 发表于 2025-3-22 07:14:48
http://reply.papertrans.cn/24/2316/231512/231512_4.png赏心悦目 发表于 2025-3-22 08:55:50
Book 2019hler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. .小口啜饮 发表于 2025-3-22 15:19:13
0075-8434 n analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. .978-3-030-25882-5978-3-030-25883-2Series ISSN 0075-8434 Series E-ISSN 1617-9692小口啜饮 发表于 2025-3-22 20:11:04
Eva Brauer,Tamara Dangelmaier,Daniela Hunoldic. Section 2.3 introduces the Anomaly flow in the simplest case of zero slope, where the flow can be understood as a deformation path connecting non-Kähler to Kähler geometry. Section 2.4 concerns the Anomaly flow with . corrections, which is motivated from theoretical physics and canonical metricscommonsense 发表于 2025-3-22 23:16:27
http://reply.papertrans.cn/24/2316/231512/231512_8.png看法等 发表于 2025-3-23 03:11:38
https://doi.org/10.1007/978-3-030-25883-2Anomaly Flow; LVMB Manifold; Non-Kähler Complex Manifold; Non-Kählerian Compact Complex Surface; Pluripo骑师 发表于 2025-3-23 09:12:06
978-3-030-25882-5Springer Nature Switzerland AG 2019