共用 发表于 2025-3-21 19:36:42
书目名称Complex Motions and Chaos in Nonlinear Systems影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0231475<br><br> <br><br>书目名称Complex Motions and Chaos in Nonlinear Systems读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0231475<br><br> <br><br>Pde5-Inhibitors 发表于 2025-3-21 20:44:33
http://reply.papertrans.cn/24/2315/231475/231475_2.pngfrozen-shoulder 发表于 2025-3-22 02:54:10
http://reply.papertrans.cn/24/2315/231475/231475_3.pngHARP 发表于 2025-3-22 06:11:48
http://reply.papertrans.cn/24/2315/231475/231475_4.png预定 发表于 2025-3-22 11:55:08
http://reply.papertrans.cn/24/2315/231475/231475_5.pngBINGE 发表于 2025-3-22 15:40:39
http://reply.papertrans.cn/24/2315/231475/231475_6.pngBINGE 发表于 2025-3-22 18:40:52
https://doi.org/10.1007/978-0-85729-256-8period-doubling cascade. The existence of homoclinic and heteroclinic orbits is rigorously proved, and a theoretical control technique for the extended chaos is proposed. The results are supported with the aid of simulations. Arbitrarily high-dimensional chaotic discrete-time dynamical systems can b伪造 发表于 2025-3-23 00:20:29
Anna Capietto,Peter Kloeden,Rafael Ortegawall in a 1D canal. This piston wall is assumed to be adiabatic (without internal degrees of freedom) and fluctuates owing to collisions with the two gases or solvents that it separates..If the pressures in the two semi-infinite reservoirs are equal, i.e., even if there is macroscopic equilibrium, tCURB 发表于 2025-3-23 03:41:24
https://doi.org/10.1007/978-3-642-32906-7ponding stability and bifurcation analysis for periodic motions are discussed. The bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are presented. Numerical illustration shows good agreement between the analytical and numerical results.excursion 发表于 2025-3-23 05:51:16
Angelo Luongo,Manuel Ferretti,Simona Di Ninoperiodic motions to chaos are presented. The stability and bifurcation of periodic motions are determined through eigenvalue analysis. Finally, the numerical results of periodic motions of the Duffing oscillator are illustrated to verify the analytical prediction. The method used herein is applicabl