CLAST 发表于 2025-3-21 18:34:54

书目名称Complex Kleinian Groups影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0231460<br><br>        <br><br>书目名称Complex Kleinian Groups读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0231460<br><br>        <br><br>

Spinal-Tap 发表于 2025-3-21 22:46:59

http://reply.papertrans.cn/24/2315/231460/231460_2.png

Longitude 发表于 2025-3-22 01:08:27

Kommentar zu C. Knill und D. Lehmkuhl on its complement is properly discontinuous, which is useful for studying geometric properties of the group. Yet, this may not be the largest region where the action is properly discontinuous. There is also the region of equicontinuity, which provides a set where we can use the powerful tools of analysis to study the group action.

令人作呕 发表于 2025-3-22 06:31:08

The Limit Set in Dimension 2, on its complement is properly discontinuous, which is useful for studying geometric properties of the group. Yet, this may not be the largest region where the action is properly discontinuous. There is also the region of equicontinuity, which provides a set where we can use the powerful tools of analysis to study the group action.

袋鼠 发表于 2025-3-22 10:41:27

Book 2013rk of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP.1.. When going into higher dimensions, the

舔食 发表于 2025-3-22 15:57:09

http://reply.papertrans.cn/24/2315/231460/231460_6.png

舔食 发表于 2025-3-22 20:35:24

https://doi.org/10.1007/978-3-662-54308-5morphisms of . can also be classified into the three types of elliptic, parabolic and loxodromic (or hyperbolic) elements, according to their geometry and dynamics. This classification can be also done algebraically, in terms of their trace.

强壮 发表于 2025-3-22 22:02:18

Staatsentwicklung und PolicyforschungSchottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the current knowledge we have about fractal sets and 1-dimensional holomorphic dynamics.

intolerance 发表于 2025-3-23 01:24:43

http://reply.papertrans.cn/24/2315/231460/231460_9.png

Finasteride 发表于 2025-3-23 08:13:17

Geometry and Dynamics of Automorphisms of ,,morphisms of . can also be classified into the three types of elliptic, parabolic and loxodromic (or hyperbolic) elements, according to their geometry and dynamics. This classification can be also done algebraically, in terms of their trace.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome