鉴赏家 发表于 2025-3-26 23:24:26

http://reply.papertrans.cn/24/2315/231460/231460_31.png

Incisor 发表于 2025-3-27 04:01:38

http://reply.papertrans.cn/24/2315/231460/231460_32.png

钢笔记下惩罚 发表于 2025-3-27 08:38:31

http://reply.papertrans.cn/24/2315/231460/231460_33.png

刚开始 发表于 2025-3-27 12:12:28

Kleinian Groups with a Control Group,sider Kleinian subgroups of PSL(3, .) whose geometry and dynamics are “governed” by a subgroup of PSL(2, .). That is the subject we address in this chapter. The corresponding subgroup in PSL(2 ,.) is the .. These groups play a significant role in the classification theorems we give in ..

五行打油诗 发表于 2025-3-27 14:58:41

http://reply.papertrans.cn/24/2315/231460/231460_35.png

词汇 发表于 2025-3-27 19:36:09

http://reply.papertrans.cn/24/2315/231460/231460_36.png

Neuralgia 发表于 2025-3-28 00:06:53

http://reply.papertrans.cn/24/2315/231460/231460_37.png

Affluence 发表于 2025-3-28 06:03:29

A Glance at the Classical Theory,Classical Kleinian groups are discrete subgroups of Möbius transformations which act on the Riemann sphere with a nonempty region of discontinuity. This includes Fuchsian groups, Schottky groups and many other interesting families.

Anthropoid 发表于 2025-3-28 06:48:42

http://reply.papertrans.cn/24/2315/231460/231460_39.png

PHON 发表于 2025-3-28 11:52:40

Projective Orbifolds and Dynamics in Dimension 2,Köbe’s retrosection theorem says that every compact Riemann surface is isomorphic to an orbit space Ω/Ґ, where Ω is an open set in the Riemann sphere S2 = PC and Ґ is a discrete subgroup of PSL(2,C) that leaves Ω invariant; in fact Γ is a Schottky group.
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome