CHAFF 发表于 2025-3-21 18:12:52
书目名称Compact Convex Sets and Boundary Integrals影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0230780<br><br> <br><br>书目名称Compact Convex Sets and Boundary Integrals读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0230780<br><br> <br><br>Spirometry 发表于 2025-3-21 21:46:30
Soziale Bewegungen in der Gegenwart,A (partially) ordered vector space . (over ℝ) is said to be . if the negative elements . are the only ones for which {.} has an upper bound. A vector subspace . of ordered vector space is said to be an . ifMeditative 发表于 2025-3-22 01:10:03
Representation of Points by Boundary Measures,Throughout this chapter we shall consider an arbitrary, but fixed, locally convex Hausdorff space . over ℝ. If . and .’ are convex subsets of . and . ⊂ .’, then .(.’) shall denote the vector space of all restrictions to . of continuous affine real-valued functions on .’. For simplicity we write . in the place of ., and we note that generally芦笋 发表于 2025-3-22 07:36:27
http://reply.papertrans.cn/24/2308/230780/230780_4.pngwreathe 发表于 2025-3-22 11:37:55
http://reply.papertrans.cn/24/2308/230780/230780_5.png完成 发表于 2025-3-22 15:58:33
https://doi.org/10.1007/978-3-642-65009-3Boundary; Convexity; Finite; Integral; Integrals; Konvexe Menge; algebra; function; functional analysis; oper完成 发表于 2025-3-22 19:02:34
978-3-642-65011-6Springer-Verlag Berlin Heidelberg 1971Fillet,Filet 发表于 2025-3-23 00:57:43
ex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech nically difficult, thesecardiopulmonary 发表于 2025-3-23 05:11:37
Book 1971s hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech nically difficult, these theorems a不真 发表于 2025-3-23 08:48:10
http://reply.papertrans.cn/24/2308/230780/230780_10.png