Synchronism
发表于 2025-3-26 22:03:57
An equivalence of categories,We prove a result of Block, that gives an equivalence of categories between the homotopy category of antiholomorphic superconnections on . and the derived category ..
切碎
发表于 2025-3-27 04:27:57
http://reply.papertrans.cn/23/2293/229219/229219_32.png
lanugo
发表于 2025-3-27 07:08:10
http://reply.papertrans.cn/23/2293/229219/229219_33.png
flutter
发表于 2025-3-27 11:38:23
http://reply.papertrans.cn/23/2293/229219/229219_34.png
出汗
发表于 2025-3-27 15:50:38
http://reply.papertrans.cn/23/2293/229219/229219_35.png
赦免
发表于 2025-3-27 20:14:09
http://reply.papertrans.cn/23/2293/229219/229219_36.png
键琴
发表于 2025-3-28 01:09:38
A proof of Theorem 10.1.1 when ,In the context of the previous two chapters, we prove the Riemann-Roch-Grothendieck theorem for submersions when ..
humectant
发表于 2025-3-28 04:52:01
The hypoelliptic superconnection forms,We construct the superconnection forms on . that are associated with the hypoelliptic superconnections of the previous chapter. We prove that their Bott-Chern class is the same as the class of the elliptic superconnection forms.
COMA
发表于 2025-3-28 09:50:17
http://reply.papertrans.cn/23/2293/229219/229219_39.png
Brittle
发表于 2025-3-28 14:07:23
http://reply.papertrans.cn/23/2293/229219/229219_40.png