装入胶囊 发表于 2025-3-23 12:53:38

Tommaso Polonelli,Michele MagnoWe describe the main results contained in the book. In particular, if . is a compact complex manifold, we outline the construction of the Chern character of coherent sheaves with values in Bott-Chern cohomology, we state the corresponding Riemann-Roch-Grothendieck theorem, and we give a sketch of the proof.

鸽子 发表于 2025-3-23 16:39:22

http://reply.papertrans.cn/23/2293/229219/229219_12.png

礼节 发表于 2025-3-23 18:44:13

http://reply.papertrans.cn/23/2293/229219/229219_13.png

epicondylitis 发表于 2025-3-24 00:41:54

Francisco Martins,Luís Lopes,Hervé PaulinoWe recall elementary facts of linear algebra and differential geometry, in particular on connections on a real tangent bundle with nonzero torsion.

deadlock 发表于 2025-3-24 04:25:37

Dulce Domingos,Francisco Martins,Lara CaiolaWe recall the definition of the antiholomorphic superconnections of Block, and we study their functorial properties. We prove that the associated sheaf cohomology is coherent, and we show that the corresponding determinant is a holomorphic line bundle.

farewell 发表于 2025-3-24 08:09:36

http://reply.papertrans.cn/23/2293/229219/229219_16.png

追踪 发表于 2025-3-24 11:31:20

http://reply.papertrans.cn/23/2293/229219/229219_17.png

Intractable 发表于 2025-3-24 16:32:41

http://reply.papertrans.cn/23/2293/229219/229219_18.png

Macronutrients 发表于 2025-3-24 19:51:39

https://doi.org/10.1007/978-3-642-23583-2We establish the Riemann-Roch-Grothendieck theorem in the case of embeddings.

vector 发表于 2025-3-25 01:46:26

Hervé Paulino,João Ruivo SantosWe state the Riemann-Roch-Grothendieck theorem in the case of a projection .. Given metric data, we construct an infinite-dimensional antiholomorphic superconnection with fiberwise elliptic curvature, and we obtain corresponding Chern character forms on ., whose Bott-Chern class does not depend on the metrics.
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck; Jean-Michel Bismut,Shu Shen,Zhaoting Wei Book 2023 The Editor(s) (if ap