热情美女 发表于 2025-3-21 17:49:34

书目名称Bounded Integral Operators on L 2 Spaces影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0190065<br><br>        <br><br>书目名称Bounded Integral Operators on L 2 Spaces读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0190065<br><br>        <br><br>

新义 发表于 2025-3-21 20:38:36

978-3-642-67018-3Springer-Verlag Berlin Heidelberg 1978

hieroglyphic 发表于 2025-3-22 04:10:59

Luminescence-Based Authenticity Testing,ake use of the infinite amount of room in ℝ., i.e., of the infinite measure. The answer is yes for II also, and the proof is not difficult, but it is better understood and more useful if instead of being attacked head on, it is embedded into a larger context.

CRASS 发表于 2025-3-22 05:06:18

http://reply.papertrans.cn/20/1901/190065/190065_4.png

cardiovascular 发表于 2025-3-22 10:13:54

Luminescence in Electrochemistryty operator on ..(ℝ.) (which is not an integral operator) and the tensor product of the identity operator on ..(ℤ.) with a projection of rank 1 on ..(II) (which is an integral operator). What is the essential difference between these two kinds of examples?

acclimate 发表于 2025-3-22 13:46:51

http://reply.papertrans.cn/20/1901/190065/190065_6.png

热心 发表于 2025-3-22 19:20:21

Apparatus for Bioluminescence Measurements,ad of the existential one. In precise terms: under what conditions on an operator . on ..(.) does it happen that .* is an integral operator for every unitary . on ..(.)? When it does happen, the operator . will be called a . integral operator on ..(.).

arsenal 发表于 2025-3-23 01:07:43

https://doi.org/10.1007/978-3-030-67311-6A matrix is a function. A complex . × . (rectangular) matrix, for example, is a function . from the Cartesian product {1,...,.} × {1,...,.} to the set ℂ of complex numbers; its value at the ordered pair <., .> is usually denoted by ... In this book it will always be denoted by the typographically and conceptually more convenient symbol .(., .).

TIGER 发表于 2025-3-23 05:24:26

Enantioselective Sensing by Luminescence,The way a matrix acts is defined by the familiar formula . The generalization to arbitrary kernels is formally obvious: . Finite sums such as the ones in (1) can always be formed; integrals such as theones indicated in (2) may fail to exist and, even when they exist, may fail todefine well-behaved functions.

armistice 发表于 2025-3-23 08:13:03

Luminescence Centers in CrystalsThe easiest examples of bounded kernels are the square-integrable ones introduced in Lemma 4.1; they induce Hilbert-Schmidt operators. The examples that follow are different; they are, for one thing, not compact.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Bounded Integral Operators on L 2 Spaces; Paul Richard Halmos,Viakalathur Shankar Sunder Book 1978 Springer-Verlag Berlin Heidelberg 1978