oxidation 发表于 2025-3-21 18:26:31
书目名称Boundary Integral Equations on Contours with Peaks影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0190019<br><br> <br><br>书目名称Boundary Integral Equations on Contours with Peaks读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0190019<br><br> <br><br>协迫 发表于 2025-3-22 00:13:57
http://reply.papertrans.cn/20/1901/190019/190019_2.pngparsimony 发表于 2025-3-22 01:06:49
Asymptotic Formulae for Solutions of Boundary Integral Equations Near Peaks,of the corresponding potentials can be found from the boundary integral equations . where . is the value of the potential . at a boundary point, and . where . is the value of the normal derivative of the single layer potentialyohimbine 发表于 2025-3-22 06:31:52
https://doi.org/10.1007/BFb0119075ress tensor with components σ., σ. and τ., which are considered as functions of the complex variables .=. + . and .. Here . and . are Cartesian coordinates of the initial position of points of an elastic body, whose displacement is the vector .(., .).Parley 发表于 2025-3-22 11:09:42
Integral Equations of Plane Elasticity in Domains with Peak,ress tensor with components σ., σ. and τ., which are considered as functions of the complex variables .=. + . and .. Here . and . are Cartesian coordinates of the initial position of points of an elastic body, whose displacement is the vector .(., .).反叛者 发表于 2025-3-22 16:16:20
http://reply.papertrans.cn/20/1901/190019/190019_6.pngperpetual 发表于 2025-3-22 20:46:39
http://reply.papertrans.cn/20/1901/190019/190019_7.pngOVER 发表于 2025-3-22 22:22:51
http://reply.papertrans.cn/20/1901/190019/190019_8.pngoverweight 发表于 2025-3-23 02:46:22
http://reply.papertrans.cn/20/1901/190019/190019_9.png贫穷地活 发表于 2025-3-23 09:34:37
https://doi.org/10.1007/BFb0119075ms for the Lamé system can be reduced to a system of integral equations for which one gets results similar to those given in the previous chapters. In order to describe the stress and strain state of a body in plane elasticity, one uses the displacement vector .(., .) = (.(., .), .(., .)) and the st