教条 发表于 2025-3-21 18:44:17
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0189808<br><br> <br><br>书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0189808<br><br> <br><br>起皱纹 发表于 2025-3-21 23:25:56
http://reply.papertrans.cn/19/1899/189808/189808_2.pngAXIOM 发表于 2025-3-22 02:46:41
http://reply.papertrans.cn/19/1899/189808/189808_3.png正式演说 发表于 2025-3-22 08:20:46
http://reply.papertrans.cn/19/1899/189808/189808_4.png勤劳 发表于 2025-3-22 12:25:12
Book 2002at the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds‘ construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.步兵 发表于 2025-3-22 16:28:32
0075-8434 . These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them i诙谐 发表于 2025-3-22 18:57:20
Jan H. BruinierIncludes supplementary material:谦卑 发表于 2025-3-22 22:04:13
http://reply.papertrans.cn/19/1899/189808/189808_8.pngarabesque 发表于 2025-3-23 02:18:47
http://reply.papertrans.cn/19/1899/189808/189808_9.pngNebulous 发表于 2025-3-23 08:36:19
Anirudh Gautam,Manish Agarwal,Mohd AmilAbstract not available