使固定 发表于 2025-3-21 18:30:51
书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0185734<br><br> <br><br>书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0185734<br><br> <br><br>易改变 发表于 2025-3-21 23:19:47
Conventional Intelligent Fault Diagnosis, at present, the typical neural network models are briefly reviewed, as well as their applications in the fault diagnosis problems for mechanical systems. The radial basis function networks and the wavelet neural networks are included. Next, the statistical learning-based fault diagnosis methods areCUB 发表于 2025-3-22 01:36:14
Hybrid Intelligent Fault Diagnosis,) combination method is introduced, where the same input feature set is considered. Next, a multiple adaptive neuro-fuzzy inference systems combination approaches with different input feature sets is demonstrated and validated using bearing fault diagnosis cases. Afterwards, a multidimensional hybridendrites 发表于 2025-3-22 05:06:54
http://reply.papertrans.cn/19/1858/185734/185734_4.pngarthroscopy 发表于 2025-3-22 09:21:12
http://reply.papertrans.cn/19/1858/185734/185734_5.png无弹性 发表于 2025-3-22 15:44:15
http://reply.papertrans.cn/19/1858/185734/185734_6.pngMissile 发表于 2025-3-22 21:00:26
https://doi.org/10.1007/978-981-16-9131-7Intelligent fault diagnosis; Remaining useful life; Rotating machinery; Industrial big data; Deep learni加入 发表于 2025-3-22 23:28:45
http://reply.papertrans.cn/19/1858/185734/185734_8.pngCOWER 发表于 2025-3-23 04:59:20
http://reply.papertrans.cn/19/1858/185734/185734_9.png向宇宙 发表于 2025-3-23 08:45:13
http://reply.papertrans.cn/19/1858/185734/185734_10.png