Sigmoidoscopy
发表于 2025-3-25 04:15:44
Bounded Linear Functionals and Best Approximation from Hyperplanes and Half-Spaces,sely those that “attain their norm” (Theorem 6.12). We should mention that many of the results of this chapter—particularly those up to Theorem 6.12—can be substantially simplified or omitted entirely if the space . is assumed ., i.e., if . is a Hilbert space. Because many of the important spaces th
conformity
发表于 2025-3-25 07:48:17
http://reply.papertrans.cn/19/1843/184203/184203_22.png
backdrop
发表于 2025-3-25 13:35:25
http://reply.papertrans.cn/19/1843/184203/184203_23.png
Apraxia
发表于 2025-3-25 19:41:36
Best Approximation in Inner Product Spaces978-1-4684-9298-9Series ISSN 1613-5237 Series E-ISSN 2197-4152
Admonish
发表于 2025-3-25 22:46:49
http://reply.papertrans.cn/19/1843/184203/184203_25.png
莎草
发表于 2025-3-26 04:03:07
http://reply.papertrans.cn/19/1843/184203/184203_26.png
不要严酷
发表于 2025-3-26 05:07:19
http://reply.papertrans.cn/19/1843/184203/184203_27.png
最高峰
发表于 2025-3-26 09:56:54
Existence and Uniqueness of Best Approximations,ce theorems of interest. In particular, the two most useful existence and uniqueness theorems can be deduced from it. They are: (1) Every finite-dimensional subspace is Chebyshev, and (2) every closed convex subset of a Hilbert space is Chebyshev.
heartburn
发表于 2025-3-26 12:58:34
http://reply.papertrans.cn/19/1843/184203/184203_29.png
relieve
发表于 2025-3-26 16:58:45
http://reply.papertrans.cn/19/1843/184203/184203_30.png