Sigmoidoscopy 发表于 2025-3-25 04:15:44
Bounded Linear Functionals and Best Approximation from Hyperplanes and Half-Spaces,sely those that “attain their norm” (Theorem 6.12). We should mention that many of the results of this chapter—particularly those up to Theorem 6.12—can be substantially simplified or omitted entirely if the space . is assumed ., i.e., if . is a Hilbert space. Because many of the important spaces thconformity 发表于 2025-3-25 07:48:17
http://reply.papertrans.cn/19/1843/184203/184203_22.pngbackdrop 发表于 2025-3-25 13:35:25
http://reply.papertrans.cn/19/1843/184203/184203_23.pngApraxia 发表于 2025-3-25 19:41:36
Best Approximation in Inner Product Spaces978-1-4684-9298-9Series ISSN 1613-5237 Series E-ISSN 2197-4152Admonish 发表于 2025-3-25 22:46:49
http://reply.papertrans.cn/19/1843/184203/184203_25.png莎草 发表于 2025-3-26 04:03:07
http://reply.papertrans.cn/19/1843/184203/184203_26.png不要严酷 发表于 2025-3-26 05:07:19
http://reply.papertrans.cn/19/1843/184203/184203_27.png最高峰 发表于 2025-3-26 09:56:54
Existence and Uniqueness of Best Approximations,ce theorems of interest. In particular, the two most useful existence and uniqueness theorems can be deduced from it. They are: (1) Every finite-dimensional subspace is Chebyshev, and (2) every closed convex subset of a Hilbert space is Chebyshev.heartburn 发表于 2025-3-26 12:58:34
http://reply.papertrans.cn/19/1843/184203/184203_29.pngrelieve 发表于 2025-3-26 16:58:45
http://reply.papertrans.cn/19/1843/184203/184203_30.png