分类 发表于 2025-3-21 19:08:58

书目名称Best Approximation in Inner Product Spaces影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0184203<br><br>        <br><br>书目名称Best Approximation in Inner Product Spaces读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0184203<br><br>        <br><br>

sacrum 发表于 2025-3-21 23:28:28

Existence and Uniqueness of Best Approximations,ce theorems of interest. In particular, the two most useful existence and uniqueness theorems can be deduced from it. They are: (1) Every finite-dimensional subspace is Chebyshev, and (2) every closed convex subset of a Hilbert space is Chebyshev.

名字的误用 发表于 2025-3-22 01:30:36

Characterization of Best Approximations,deed, it will be the basis for . characterization theorem that we give. The notion of a dual cone plays an essential role in this characterization. In the particular case where the convex set is a subspace, we obtain the familiar orthogonality condition, which for finite-dimensional subspaces reduce

Malleable 发表于 2025-3-22 07:29:11

http://reply.papertrans.cn/19/1843/184203/184203_4.png

小说 发表于 2025-3-22 11:01:23

Bounded Linear Functionals and Best Approximation from Hyperplanes and Half-Spaces,subspaces, these functionals are the most important linear mappings that arise in our work. We saw in the last chapter that every element of the inner product space . naturally generates a bounded linear functional on . (see Theorem 5.18). Here we give a general representation theorem for . bounded

concentrate 发表于 2025-3-22 14:53:53

Error of Approximation, given an explicit formula for the distance . in the last chapter (Theorem 6.25), and a strengthening of this distance formula in the particular case where the convex set . is either a convex cone or a subspace (Theorem 6.26). Now we will extract still further refinements, improvements, and applicat

臭名昭著 发表于 2025-3-22 17:36:04

http://reply.papertrans.cn/19/1843/184203/184203_7.png

无孔 发表于 2025-3-22 22:38:54

Interpolation and Approximation,terpolation (SAI), simultaneous approximation and norm-preservation (SAN), simultaneous interpolation and norm-preservation (SIN), and simultaneous approximation and interpolation with norm-preservation (SAIN).

craven 发表于 2025-3-23 05:20:35

http://reply.papertrans.cn/19/1843/184203/184203_9.png

高度表 发表于 2025-3-23 05:45:55

http://reply.papertrans.cn/19/1843/184203/184203_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Best Approximation in Inner Product Spaces; Frank Deutsch Textbook 2001 Springer-Verlag New York 2001 Convexity.Hilbert space.algorithms.c