挑染 发表于 2025-3-21 17:48:16

书目名称Bernoulli Numbers and Zeta Functions影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0183881<br><br>        <br><br>书目名称Bernoulli Numbers and Zeta Functions读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0183881<br><br>        <br><br>

暂时休息 发表于 2025-3-21 22:35:11

http://reply.papertrans.cn/19/1839/183881/183881_2.png

猜忌 发表于 2025-3-22 00:53:13

http://reply.papertrans.cn/19/1839/183881/183881_3.png

IRK 发表于 2025-3-22 05:22:46

http://reply.papertrans.cn/19/1839/183881/183881_4.png

憎恶 发表于 2025-3-22 11:07:03

https://doi.org/10.1007/978-0-387-72577-2In this chapter, we introduce Barnes’ multiple zeta function, which is a natural generalization of the Hurwitz zeta function, give an analytic continuation, and then express their special values at negative integers by using Bernoulli polynomials.

Handedness 发表于 2025-3-22 14:59:38

http://reply.papertrans.cn/19/1839/183881/183881_6.png

躲债 发表于 2025-3-22 17:26:02

http://reply.papertrans.cn/19/1839/183881/183881_7.png

止痛药 发表于 2025-3-22 23:49:59

,The Euler–Maclaurin Summation Formula and the Riemann Zeta Function,In this chapter we give a formula that describes Bernoulli numbers in terms of Stirling numbers. This formula will be used to prove a theorem of Clausen and von Staudtin the next chapter. As an application of this formula, we also introduce an interesting algorithm to compute Bernoulli numbers.

压迫 发表于 2025-3-23 02:35:22

http://reply.papertrans.cn/19/1839/183881/183881_9.png

ambivalence 发表于 2025-3-23 08:36:43

Hurwitz Numbers,In this section, we briefly introduce Hurwitz’s Hurwitz generalization of Bernoulli numbers, known as the Hurwitz numbers.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Bernoulli Numbers and Zeta Functions; Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a