挑染 发表于 2025-3-21 17:48:16
书目名称Bernoulli Numbers and Zeta Functions影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0183881<br><br> <br><br>书目名称Bernoulli Numbers and Zeta Functions读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0183881<br><br> <br><br>暂时休息 发表于 2025-3-21 22:35:11
http://reply.papertrans.cn/19/1839/183881/183881_2.png猜忌 发表于 2025-3-22 00:53:13
http://reply.papertrans.cn/19/1839/183881/183881_3.pngIRK 发表于 2025-3-22 05:22:46
http://reply.papertrans.cn/19/1839/183881/183881_4.png憎恶 发表于 2025-3-22 11:07:03
https://doi.org/10.1007/978-0-387-72577-2In this chapter, we introduce Barnes’ multiple zeta function, which is a natural generalization of the Hurwitz zeta function, give an analytic continuation, and then express their special values at negative integers by using Bernoulli polynomials.Handedness 发表于 2025-3-22 14:59:38
http://reply.papertrans.cn/19/1839/183881/183881_6.png躲债 发表于 2025-3-22 17:26:02
http://reply.papertrans.cn/19/1839/183881/183881_7.png止痛药 发表于 2025-3-22 23:49:59
,The Euler–Maclaurin Summation Formula and the Riemann Zeta Function,In this chapter we give a formula that describes Bernoulli numbers in terms of Stirling numbers. This formula will be used to prove a theorem of Clausen and von Staudtin the next chapter. As an application of this formula, we also introduce an interesting algorithm to compute Bernoulli numbers.压迫 发表于 2025-3-23 02:35:22
http://reply.papertrans.cn/19/1839/183881/183881_9.pngambivalence 发表于 2025-3-23 08:36:43
Hurwitz Numbers,In this section, we briefly introduce Hurwitz’s Hurwitz generalization of Bernoulli numbers, known as the Hurwitz numbers.