是限制 发表于 2025-3-23 12:48:23

Priors for Infinite Networks,r hidden-to-output weights results in a Gaussian process prior for functions,which may be smooth, Brownian, or fractional Brownian. Quite different effects can be obtained using priors based on non-Gaussian stable distributions. In networks with more than one hidden layer, a combination of Gaussian and non-Gaussian priors appears most interesting.

心胸开阔 发表于 2025-3-23 15:03:36

Monte Carlo Implementation,t hybrid Monte Carlo performs better than simple Metropolis,due to its avoidance of random walk behaviour. I also discuss variants of hybrid Monte Carlo in which dynamical computations are done using “partial gradients”, in which acceptance is based on a “window” of states,and in which momentum updates incorporate “persistence”.

腐烂 发表于 2025-3-23 20:07:09

http://reply.papertrans.cn/19/1819/181856/181856_13.png

控诉 发表于 2025-3-23 22:17:09

http://reply.papertrans.cn/19/1819/181856/181856_14.png

冷峻 发表于 2025-3-24 06:07:51

http://reply.papertrans.cn/19/1819/181856/181856_15.png

带来 发表于 2025-3-24 08:04:25

Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/181856.jpg

FIN 发表于 2025-3-24 11:20:54

http://reply.papertrans.cn/19/1819/181856/181856_17.png

Precursor 发表于 2025-3-24 18:35:09

http://reply.papertrans.cn/19/1819/181856/181856_18.png

rods366 发表于 2025-3-24 22:19:32

http://reply.papertrans.cn/19/1819/181856/181856_19.png

GEON 发表于 2025-3-25 03:06:24

http://reply.papertrans.cn/19/1819/181856/181856_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Bayesian Learning for Neural Networks; Radford M. Neal Book 1996 Springer Science+Business Media New York 1996 Fitting.Likelihood.algorith