PLY 发表于 2025-3-21 17:36:54

书目名称Bayesian Learning for Neural Networks影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0181856<br><br>        <br><br>书目名称Bayesian Learning for Neural Networks读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0181856<br><br>        <br><br>

synovial-joint 发表于 2025-3-21 20:17:24

http://reply.papertrans.cn/19/1819/181856/181856_2.png

无畏 发表于 2025-3-22 02:37:14

http://reply.papertrans.cn/19/1819/181856/181856_3.png

Cognizance 发表于 2025-3-22 05:58:40

https://doi.org/10.1007/978-1-61779-267-0t hybrid Monte Carlo performs better than simple Metropolis,due to its avoidance of random walk behaviour. I also discuss variants of hybrid Monte Carlo in which dynamical computations are done using “partial gradients”, in which acceptance is based on a “window” of states,and in which momentum updates incorporate “persistence”.

易受骗 发表于 2025-3-22 12:32:48

Hiroe Ohnishi,Yasuaki Oda,Hajime Ohgushiirrelevant inputs in tests on synthetic regression and classification problems. Tests on two real data sets showed that Bayesian neural network models, implemented using hybrid Monte Carlo, can produce good results when applied to realistic problems of moderate size.

凹处 发表于 2025-3-22 13:18:10

http://reply.papertrans.cn/19/1819/181856/181856_6.png

无王时期, 发表于 2025-3-22 17:22:15

http://reply.papertrans.cn/19/1819/181856/181856_7.png

interior 发表于 2025-3-22 21:22:01

Conclusions and Further Work,oncluding chapter, I will review what has been accomplished in these areas, and describe on-going and potential future work to extend these results, both for neural networks and for other flexible Bayesian models.

慢跑 发表于 2025-3-23 01:23:07

https://doi.org/10.1007/978-1-61779-794-1, challenges the common notion that one must limit the complexity of the model used when the amount of training data is small. I begin here by introducing the Bayesian framework, discussing past work on applying it to neural networks, and reviewing the basic concepts of Markov chain Monte Carlo implementation.

MORT 发表于 2025-3-23 08:32:30

Introduction,, challenges the common notion that one must limit the complexity of the model used when the amount of training data is small. I begin here by introducing the Bayesian framework, discussing past work on applying it to neural networks, and reviewing the basic concepts of Markov chain Monte Carlo implementation.
页: [1] 2 3 4
查看完整版本: Titlebook: Bayesian Learning for Neural Networks; Radford M. Neal Book 1996 Springer Science+Business Media New York 1996 Fitting.Likelihood.algorith