Free-Radical 发表于 2025-3-23 09:46:21

https://doi.org/10.1007/978-3-540-93931-3odicity theorem which can be obtained using equivariant Toeplitz operators just as in the non-equivariant case. Our previous method also leads to equivariant Thorn isomorphism theorem when . is a commutative Lie group. Lastly we prove the localization theorem.

Phonophobia 发表于 2025-3-23 14:44:16

http://reply.papertrans.cn/17/1640/163967/163967_12.png

半球 发表于 2025-3-23 19:13:52

http://reply.papertrans.cn/17/1640/163967/163967_13.png

cognizant 发表于 2025-3-23 23:51:56

https://doi.org/10.1057/9781137029621his is approach is different from that considered in Atiyah and Bott [.]. The formulation of the proof of the Bott periodicity theorem presented here fits into the axiomatic treatment as given in Atiyah [.].

synovitis 发表于 2025-3-24 05:58:11

http://reply.papertrans.cn/17/1640/163967/163967_15.png

平淡而无味 发表于 2025-3-24 07:01:22

http://reply.papertrans.cn/17/1640/163967/163967_16.png

Myocyte 发表于 2025-3-24 12:25:19

http://reply.papertrans.cn/17/1640/163967/163967_17.png

必死 发表于 2025-3-24 15:53:05

http://reply.papertrans.cn/17/1640/163967/163967_18.png

浪荡子 发表于 2025-3-24 20:52:55

http://reply.papertrans.cn/17/1640/163967/163967_19.png

招惹 发表于 2025-3-25 02:50:45

http://reply.papertrans.cn/17/1640/163967/163967_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Atiyah-Singer Index Theorem - An Introduction; An Introduction Amiya Mukherjee Book 2013 Hindustan Book Agency 2013