不近人情 发表于 2025-3-25 07:09:53

http://reply.papertrans.cn/17/1639/163821/163821_21.png

逗它小傻瓜 发表于 2025-3-25 11:25:55

http://reply.papertrans.cn/17/1639/163821/163821_22.png

他去就结束 发表于 2025-3-25 15:27:15

Charles E. Burkhardt,Jacob J. Leventhalse models of non-ergodic type (see §2 for definitions), and results on efficiency of estimators and tests will be discussed using a unified approach. Our aim in this chapter is to present the main ideas and general asymptotic results in an informal manner. More detailed treatment of specific problems discussed here is given in subsequent chapters.

conifer 发表于 2025-3-25 15:52:57

https://doi.org/10.1007/978-1-4615-6205-4f a general non-ergodic model defined in terras of the non-local asymptotic behaviour of the log-likelihood ratio and discuss various applications. Also, extensions of Bahadur efficiency concepts to such models will be briefly indicated.

裹住 发表于 2025-3-25 20:56:19

http://reply.papertrans.cn/17/1639/163821/163821_25.png

entice 发表于 2025-3-26 03:16:21

http://reply.papertrans.cn/17/1639/163821/163821_26.png

Valves 发表于 2025-3-26 04:24:16

http://reply.papertrans.cn/17/1639/163821/163821_27.png

BARB 发表于 2025-3-26 09:58:50

Efficiency of Estimation,timators, there is an upper bound for the asymptotic concentration, such that the set of parameter values on which any particular estimator has higher concentration is of Lebesgue measure zero. The restriction placed on the class of competing estimators in order to assert the validity of the upper b

才能 发表于 2025-3-26 13:03:09

http://reply.papertrans.cn/17/1639/163821/163821_29.png

迅速飞过 发表于 2025-3-26 20:42:45

http://reply.papertrans.cn/17/1639/163821/163821_30.png
页: 1 2 [3] 4
查看完整版本: Titlebook: Asymptotic Optimal Inference for Non-ergodic Models; Ishwar V. Basawa,David John Scott Book 1983 Springer-Verlag New York Inc. 1983 Branch