Fibromyalgia 发表于 2025-3-21 16:04:42
书目名称Artificial Intelligence and Machine Learning影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0162230<br><br> <br><br>书目名称Artificial Intelligence and Machine Learning读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0162230<br><br> <br><br>notice 发表于 2025-3-21 22:11:36
1865-0929 ical Activity Using Bayesian Network Learning” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.. .978-3-030-76639-9978-3-030-76640-5Series ISSN 1865-0929 Series E-ISSN 1865-0937暂时休息 发表于 2025-3-22 03:51:34
Caroline Lucy,Julie Wojtaszek,Leah LaLonde on a set of high-dimensional discrete benchmark problems, including a real-life application, against state-of-the-art discrete surrogate-based methods. Our experiments with different kinds of discrete decision variables and time constraints also give more insight into which algorithms work well on运动吧 发表于 2025-3-22 05:14:32
http://reply.papertrans.cn/17/1623/162230/162230_4.png远地点 发表于 2025-3-22 12:42:40
http://reply.papertrans.cn/17/1623/162230/162230_5.png模范 发表于 2025-3-22 14:37:28
Stephan D. Voss,Angela M. Feracozens’ behavior into account. We combine a Location Based Social Network (LBSN) mobility data set with tree location data sets, both of New York City and Paris, as a case study. The effect of four different policies is evaluated on simulated movement data and assessed on the average, overall exposure禁止 发表于 2025-3-22 17:19:19
http://reply.papertrans.cn/17/1623/162230/162230_7.pngMobile 发表于 2025-3-23 00:10:51
,Comparing Correction Methods to Reduce Misclassification Bias, an expression for the MSE in finite samples, complementing the existing asymptotic results in the literature. The expressions are then used to compute decision boundaries numerically, indicating under which conditions each of the estimators is optimal, i.e., has the lowest MSE. Our main conclusion乐器演奏者 发表于 2025-3-23 02:11:13
,‘Thy Algorithm Shalt Not Bear False Witness’: An Evaluation of Multiclass Debiasing Methods on Word used word embeddings, namely: Word2Vec, GloVe, and ConceptNet, it is shown that the preferred method is ConceptorDebiasing. Specifically, this technique manages to decrease the measured religious bias on average by 82.42%, 96.78% and 54.76% for the three word embedding sets respectively.反对 发表于 2025-3-23 07:31:45
http://reply.papertrans.cn/17/1623/162230/162230_10.png