Dopamine 发表于 2025-3-21 19:34:03
书目名称Artificial Intelligence XL影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162158<br><br> <br><br>书目名称Artificial Intelligence XL读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162158<br><br> <br><br>木质 发表于 2025-3-21 22:58:39
http://reply.papertrans.cn/17/1622/162158/162158_2.png不能根除 发表于 2025-3-22 00:40:03
Exploring Multilingual Word Embedding Alignments in BERT Models: A Case Study of English and Norwegialysis also shows that embedding a word encodes information about the language to which it belongs. We, therefore, believe that in pre-trained multilingual models’ knowledge from one language can be transferred to another without direct supervision and help solve the data sparsity problem for minor亲爱 发表于 2025-3-22 06:05:07
http://reply.papertrans.cn/17/1622/162158/162158_4.png大包裹 发表于 2025-3-22 12:08:57
http://reply.papertrans.cn/17/1622/162158/162158_5.pngDissonance 发表于 2025-3-22 16:46:41
http://reply.papertrans.cn/17/1622/162158/162158_6.pngSeizure 发表于 2025-3-22 20:42:18
http://reply.papertrans.cn/17/1622/162158/162158_7.pngcongenial 发表于 2025-3-22 22:00:17
Deep Despeckling of SAR Images to Improve Change Detection Performancesed method demonstrate superior performance compared to state-of-the-art methods such as DDNet and LANTNet performance. Our method significantly increased the change detection accuracy from a baseline of 86.65% up to 90.79% for DDNet and from 87.16% to 91.1% for LANTNet in the Yellow River dataset.Immunization 发表于 2025-3-23 05:17:43
Profiling Power Consumption for Deep Learning on Resource Limited Devicesa common approach to facilitate such deployments. This paper investigates the power consumption behaviour of CNN models from the DenseNet, EfficientNet, MobileNet, ResNet, ConvNeXt & RegNet architecture families, processing imagery on board a Nvidia Jetson Orin Nano platform. It was found that energ镀金 发表于 2025-3-23 08:11:13
http://reply.papertrans.cn/17/1622/162158/162158_10.png