轻触
发表于 2025-3-26 23:17:40
http://reply.papertrans.cn/17/1618/161755/161755_31.png
带来的感觉
发表于 2025-3-27 02:17:10
Topology,or example, we will show in Section 5.4 that .(.) and .(.) have the same Betti numbers if and only if . and . are .-equivalent, and that .(.) and .(.) have isomorphic cohomology rings if and only if . and . are .—equivalent.
Flagging
发表于 2025-3-27 06:28:48
http://reply.papertrans.cn/17/1618/161755/161755_33.png
daredevil
发表于 2025-3-27 11:13:25
Anticholinesterases and War Gases, the groups. The columns index the types . of the orbits. This information is sufficient to construct the matrix .(.) in each case. For example, Table C.2 shows that in .. there are two orbits .., .. of type .. with cardinalities 12, 6 and one orbit of type .(3) with cardinality 8. The matrix .(..)
阻止
发表于 2025-3-27 17:33:23
http://reply.papertrans.cn/17/1618/161755/161755_35.png
BUDGE
发表于 2025-3-27 20:26:49
http://reply.papertrans.cn/17/1618/161755/161755_36.png
发生
发表于 2025-3-27 22:08:57
http://reply.papertrans.cn/17/1618/161755/161755_37.png
使混合
发表于 2025-3-28 03:43:57
Algebras,n Section 3.1. This construction is generalized to affine arrangements in Section 3.2. The algebra .(.) is the quotient of the exterior algebra .(.) based on . by a homogeneous ideal .(.), .(.) = .(.) / .(.). This algebra is constructed using only .(.). It will reappear in Chapter 5 with a topologic
辩论
发表于 2025-3-28 08:20:38
http://reply.papertrans.cn/17/1618/161755/161755_39.png
micronized
发表于 2025-3-28 11:51:59
http://reply.papertrans.cn/17/1618/161755/161755_40.png