轻触 发表于 2025-3-26 23:17:40

http://reply.papertrans.cn/17/1618/161755/161755_31.png

带来的感觉 发表于 2025-3-27 02:17:10

Topology,or example, we will show in Section 5.4 that .(.) and .(.) have the same Betti numbers if and only if . and . are .-equivalent, and that .(.) and .(.) have isomorphic cohomology rings if and only if . and . are .—equivalent.

Flagging 发表于 2025-3-27 06:28:48

http://reply.papertrans.cn/17/1618/161755/161755_33.png

daredevil 发表于 2025-3-27 11:13:25

Anticholinesterases and War Gases, the groups. The columns index the types . of the orbits. This information is sufficient to construct the matrix .(.) in each case. For example, Table C.2 shows that in .. there are two orbits .., .. of type .. with cardinalities 12, 6 and one orbit of type .(3) with cardinality 8. The matrix .(..)

阻止 发表于 2025-3-27 17:33:23

http://reply.papertrans.cn/17/1618/161755/161755_35.png

BUDGE 发表于 2025-3-27 20:26:49

http://reply.papertrans.cn/17/1618/161755/161755_36.png

发生 发表于 2025-3-27 22:08:57

http://reply.papertrans.cn/17/1618/161755/161755_37.png

使混合 发表于 2025-3-28 03:43:57

Algebras,n Section 3.1. This construction is generalized to affine arrangements in Section 3.2. The algebra .(.) is the quotient of the exterior algebra .(.) based on . by a homogeneous ideal .(.), .(.) = .(.) / .(.). This algebra is constructed using only .(.). It will reappear in Chapter 5 with a topologic

辩论 发表于 2025-3-28 08:20:38

http://reply.papertrans.cn/17/1618/161755/161755_39.png

micronized 发表于 2025-3-28 11:51:59

http://reply.papertrans.cn/17/1618/161755/161755_40.png
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Arrangements of Hyperplanes; Peter Orlik,Hiroaki Terao Book 1992 Springer-Verlag Berlin Heidelberg 1992 algebraic topology of manifolds.ge