倔强不能
发表于 2025-3-23 10:49:15
Introduction,Show that . cuts can divide a cheese into as many as (. + 1) (..‒. + 6) /6 pieces.
Clumsy
发表于 2025-3-23 17:12:50
http://reply.papertrans.cn/17/1618/161755/161755_12.png
松驰
发表于 2025-3-23 20:31:30
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/161755.jpg
不愿
发表于 2025-3-24 01:41:44
https://doi.org/10.1007/978-3-662-02772-1algebraic topology of manifolds; geometric lattices; reflection groups; singularities; singularity theor
bromide
发表于 2025-3-24 02:57:29
978-3-642-08137-8Springer-Verlag Berlin Heidelberg 1992
Hyperplasia
发表于 2025-3-24 07:53:26
Arrangements of Hyperplanes978-3-662-02772-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
蔑视
发表于 2025-3-24 14:26:01
http://reply.papertrans.cn/17/1618/161755/161755_17.png
忍受
发表于 2025-3-24 15:46:14
Charles J. Cazeau,Stuart D. Scott Jr.or example, we will show in Section 5.4 that .(.) and .(.) have the same Betti numbers if and only if . and . are .-equivalent, and that .(.) and .(.) have isomorphic cohomology rings if and only if . and . are .—equivalent.
–scent
发表于 2025-3-24 22:27:50
Charles J. Cazeau,Stuart D. Scott Jr.led the characteristic polynomial. A fundamental technical tool in this book is the method of ., which allows induction on the number of hyperplanes in the arrangement. It uses the triple (.) of Definition 1.14. The Deletion-Restriction Theorem states:
银版照相
发表于 2025-3-25 02:26:55
Combinatorics,led the characteristic polynomial. A fundamental technical tool in this book is the method of ., which allows induction on the number of hyperplanes in the arrangement. It uses the triple (.) of Definition 1.14. The Deletion-Restriction Theorem states: