倔强不能 发表于 2025-3-23 10:49:15

Introduction,Show that . cuts can divide a cheese into as many as (. + 1) (..‒. + 6) /6 pieces.

Clumsy 发表于 2025-3-23 17:12:50

http://reply.papertrans.cn/17/1618/161755/161755_12.png

松驰 发表于 2025-3-23 20:31:30

Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/161755.jpg

不愿 发表于 2025-3-24 01:41:44

https://doi.org/10.1007/978-3-662-02772-1algebraic topology of manifolds; geometric lattices; reflection groups; singularities; singularity theor

bromide 发表于 2025-3-24 02:57:29

978-3-642-08137-8Springer-Verlag Berlin Heidelberg 1992

Hyperplasia 发表于 2025-3-24 07:53:26

Arrangements of Hyperplanes978-3-662-02772-1Series ISSN 0072-7830 Series E-ISSN 2196-9701

蔑视 发表于 2025-3-24 14:26:01

http://reply.papertrans.cn/17/1618/161755/161755_17.png

忍受 发表于 2025-3-24 15:46:14

Charles J. Cazeau,Stuart D. Scott Jr.or example, we will show in Section 5.4 that .(.) and .(.) have the same Betti numbers if and only if . and . are .-equivalent, and that .(.) and .(.) have isomorphic cohomology rings if and only if . and . are .—equivalent.

–scent 发表于 2025-3-24 22:27:50

Charles J. Cazeau,Stuart D. Scott Jr.led the characteristic polynomial. A fundamental technical tool in this book is the method of ., which allows induction on the number of hyperplanes in the arrangement. It uses the triple (.) of Definition 1.14. The Deletion-Restriction Theorem states:

银版照相 发表于 2025-3-25 02:26:55

Combinatorics,led the characteristic polynomial. A fundamental technical tool in this book is the method of ., which allows induction on the number of hyperplanes in the arrangement. It uses the triple (.) of Definition 1.14. The Deletion-Restriction Theorem states:
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Arrangements of Hyperplanes; Peter Orlik,Hiroaki Terao Book 1992 Springer-Verlag Berlin Heidelberg 1992 algebraic topology of manifolds.ge