Affordable 发表于 2025-3-21 16:39:30

书目名称Applications of Number Theory to Numerical Analysis影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0159525<br><br>        <br><br>书目名称Applications of Number Theory to Numerical Analysis读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0159525<br><br>        <br><br>

antipsychotic 发表于 2025-3-22 00:06:08

978-3-642-67831-8Springer-Verlag Berlin Heidelberg and Science Press. Beijing 1981

失误 发表于 2025-3-22 01:44:36

http://reply.papertrans.cn/16/1596/159525/159525_3.png

挖掘 发表于 2025-3-22 07:00:24

Ravindra H. Patil,Vijay L. Maheshwaribtained by . = . (. = 1, 2, ....) which is essentially the Jacobi-Perron algorithm (Cf. L. Bernstein ). It yields less precise results but the computations of . and ..(1 ≤ . ≤ .) are comparatively simple.

粗鄙的人 发表于 2025-3-22 09:56:30

Apekcha Bajpai,Bhavdish N. Johrifying 2 opposite sides of the unit square 0 ≤ . ≤ 1, 0 ≤ . ≤ 1. In general, . is obtained by identifying the 2. opposite surfaces of the s-dimensional unit cube, i.e., the points . and . are identified, where 1 ≤ . ≤ ..

有机体 发表于 2025-3-22 15:58:07

Recurrence Relations and Rational Approximation,btained by . = . (. = 1, 2, ....) which is essentially the Jacobi-Perron algorithm (Cf. L. Bernstein ). It yields less precise results but the computations of . and ..(1 ≤ . ≤ .) are comparatively simple.

万花筒 发表于 2025-3-22 17:46:50

http://reply.papertrans.cn/16/1596/159525/159525_7.png

ALIBI 发表于 2025-3-22 21:56:51

Ravindra H. Patil,Vijay L. Maheshwaribtained by . = . (. = 1, 2, ....) which is essentially the Jacobi-Perron algorithm (Cf. L. Bernstein ). It yields less precise results but the computations of . and ..(1 ≤ . ≤ .) are comparatively simple.

archaeology 发表于 2025-3-23 02:22:12

Apekcha Bajpai,Bhavdish N. Johrifying 2 opposite sides of the unit square 0 ≤ . ≤ 1, 0 ≤ . ≤ 1. In general, . is obtained by identifying the 2. opposite surfaces of the s-dimensional unit cube, i.e., the points . and . are identified, where 1 ≤ . ≤ ..

通情达理 发表于 2025-3-23 08:20:13

Endophthalmitis in Clinical PracticeLet . denote the rational number field and . be an algebraic number of degree .. Then the algebraic number field . = .(.) is the field given by the polynomials in . of degree < . with rational coefficients.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Applications of Number Theory to Numerical Analysis; Hua Loo Keng,Wang Yuan Book 1981 Springer-Verlag Berlin Heidelberg and Science Press.