画布 发表于 2025-3-23 10:39:09

http://reply.papertrans.cn/16/1571/157037/157037_11.png

作茧自缚 发表于 2025-3-23 15:25:03

http://reply.papertrans.cn/16/1571/157037/157037_12.png

Figate 发表于 2025-3-23 21:51:50

0743-1643 Overview: 978-0-8176-3413-1978-1-4899-6724-4Series ISSN 0743-1643 Series E-ISSN 2296-505X

pacific 发表于 2025-3-23 22:55:36

https://doi.org/10.1007/978-1-4899-6724-4analysis; Integral; integral equation; mathematics

无动于衷 发表于 2025-3-24 06:13:33

http://reply.papertrans.cn/16/1571/157037/157037_15.png

含水层 发表于 2025-3-24 07:04:33

Integral Formulas and First Applications,the arguments which lead from the Poincaré .-lemma and the regularity of the ∂̄-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form

inscribe 发表于 2025-3-24 13:36:50

The Cauchy-Riemann Equation on q-Convex Manifolds, then dim H. (X, E) < ∞ for all r≥n−q, where, in the . q-convex case, even H. (X, E) = 0 for all r≥n−q. Also in Sect. 12, we prove the following supplement to Theorem 11.2: If D is a non-degenerate . q-convex domain in an n-dimensional complex manifold X, and E is a holomorphic vector bundle over X,

Anticoagulant 发表于 2025-3-24 14:59:46

The Cauchy-Riemann Equation on q-Concave Manifolds,r≤q−1 admit uniquely determined continuations along such extensions (for r=0, this is the global Hartogs extension phenomenon for holomorphic functions). Moreover, corresponding results with uniform estimates are obtained. At the end of Sect. 15 we prove the classical Andreotti-Grauert finiteness th

Terrace 发表于 2025-3-24 22:23:05

O. Pongs,R. Bald,V. A. Erdmann,E. Reinwaldthe arguments which lead from the Poincaré .-lemma and the regularity of the ∂̄-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form

bourgeois 发表于 2025-3-25 00:48:33

http://reply.papertrans.cn/16/1571/157037/157037_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Andreotti-Grauert Theory by Integral Formulas; Gennadi M. Henkin,Jürgen Leiterer Book 1988 Springer Science+Business Media New York 1988 a