estrange 发表于 2025-3-21 19:59:02
书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155557<br><br> <br><br>书目名称An Introduction to the Kolmogorov–Bernoulli Equivalence读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155557<br><br> <br><br>Delectable 发表于 2025-3-21 22:30:58
http://reply.papertrans.cn/16/1556/155557/155557_2.pngBALE 发表于 2025-3-22 03:46:08
http://reply.papertrans.cn/16/1556/155557/155557_3.png种类 发表于 2025-3-22 05:07:13
http://reply.papertrans.cn/16/1556/155557/155557_4.pngcollateral 发表于 2025-3-22 10:10:05
SpringerBriefs in Mathematicshttp://image.papertrans.cn/a/image/155557.jpgPATHY 发表于 2025-3-22 16:13:58
https://doi.org/10.1007/978-3-030-27390-3Kolmogorov systems; Bernoulli systems; ergodic theory; isomorphism problem; disintegration of measures; 3abject 发表于 2025-3-22 17:11:16
http://reply.papertrans.cn/16/1556/155557/155557_7.pngAWRY 发表于 2025-3-22 22:17:28
Die digitale Evolution moderner Großstädtec hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).Fillet,Filet 发表于 2025-3-23 02:31:57
Michael Jaekel,Karsten Bronnerthich will be crucial to the development of the results in the subsequent chapters. This chapter has no intention of being an introductory approach to ergodic theory or entropy theory, but to provide an account of results which will be necessary for the subsequent chapters, therefore proofs of the ciHandedness 发表于 2025-3-23 08:14:20
https://doi.org/10.1007/978-3-531-90649-2s originally given by Ornstein and Weiss in 1973 in the article entitled “Geodesic flows are Bernoullian” (Ornstein and Weiss, Isr J Math 14:184–198, 1973). The method introduced by Ornstein–Weiss uses the geometric structures associated to the ergodic automorphisms of . to obtain a sequence of refi