健谈的人 发表于 2025-3-23 11:11:24
https://doi.org/10.1007/978-3-531-90649-2is chapter is to show that Kolmogorov and Bernoulli property can be obtained for a much more general class of dynamical systems, namely those admitting a global uniform hyperbolic behavior, i.e., the Anosov systems (Definition 4.1). Anosov systems play a crucial role in smooth ergodic theory being t疏忽 发表于 2025-3-23 15:31:57
http://reply.papertrans.cn/16/1556/155557/155557_12.pngArboreal 发表于 2025-3-23 20:42:07
Introduction,c hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).飞镖 发表于 2025-3-23 23:34:30
http://reply.papertrans.cn/16/1556/155557/155557_14.pngMindfulness 发表于 2025-3-24 04:16:45
http://reply.papertrans.cn/16/1556/155557/155557_15.pngOrdnance 发表于 2025-3-24 07:49:41
http://reply.papertrans.cn/16/1556/155557/155557_16.pngCondense 发表于 2025-3-24 11:49:46
State of the Art,ve a smooth measure and admit some level of hyperbolicity. We define the class of non-uniformly hyperbolic diffeomorphisms (resp. flows), the class of smooth maps (resp. flows) with singularities, and the class of partially hyperbolic diffeomorphisms derived from Anosov, and present the state of artColonnade 发表于 2025-3-24 15:53:19
http://reply.papertrans.cn/16/1556/155557/155557_18.pnganatomical 发表于 2025-3-24 21:26:08
http://reply.papertrans.cn/16/1556/155557/155557_19.pngneoplasm 发表于 2025-3-24 23:09:04
2191-8198 ith this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area..978-3-030-27389-7978-3-030-27390-3Series ISSN 2191-8198 Series E-ISSN 2191-8201