HBA1C 发表于 2025-3-21 16:22:13
书目名称Algebra II影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152469<br><br> <br><br>书目名称Algebra II读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152469<br><br> <br><br>狂乱 发表于 2025-3-21 20:55:18
https://doi.org/10.1007/978-3-8350-9279-2at (. ∘.) ∘. = . ∘ (. ∘.) for all composable pairs ., . and ., .. Finally, for every ., there exists an . . such that . ∘ Id. = . and Id. ∘. = . for all morphisms .: . → ., .: . → . in .. It is actually unique for every ., because Id.. = Id..∘ Id.. = Id.. for every two such endomorphisms ..分开如此和谐 发表于 2025-3-22 00:52:30
http://reply.papertrans.cn/16/1525/152469/152469_3.pngAnthropoid 发表于 2025-3-22 05:21:59
Categories and Functors,at (. ∘.) ∘. = . ∘ (. ∘.) for all composable pairs ., . and ., .. Finally, for every ., there exists an . . such that . ∘ Id. = . and Id. ∘. = . for all morphisms .: . → ., .: . → . in .. It is actually unique for every ., because Id.. = Id..∘ Id.. = Id.. for every two such endomorphisms ..Abrade 发表于 2025-3-22 10:25:03
http://reply.papertrans.cn/16/1525/152469/152469_5.png战胜 发表于 2025-3-22 14:26:16
http://reply.papertrans.cn/16/1525/152469/152469_6.png抛射物 发表于 2025-3-22 21:05:34
http://reply.papertrans.cn/16/1525/152469/152469_7.pngforager 发表于 2025-3-23 01:12:52
https://doi.org/10.1007/978-3-8350-9279-2Given a set . and a field ., let us write . for the vector space with basis . over .. It is formed by the formal linear combinations .. ⋅ . of elements . ∈ . with coefficients ., all but a finite number of which vanish. By definition, the . . spanned by the set . is the tensor algebra . of the vector space ..Extricate 发表于 2025-3-23 05:01:15
http://reply.papertrans.cn/16/1525/152469/152469_9.pngoverbearing 发表于 2025-3-23 07:26:37
https://doi.org/10.1007/978-3-8350-9279-2Everywhere in this section we assume by default that . is a field of characteristic zero.