Opponent 发表于 2025-3-26 21:39:53

http://reply.papertrans.cn/16/1525/152469/152469_31.png

投射 发表于 2025-3-27 03:38:21

http://reply.papertrans.cn/16/1525/152469/152469_32.png

完成 发表于 2025-3-27 09:11:21

https://doi.org/10.1007/978-3-8350-9279-2ape. Associated with every standard filling . of shape . = (.., .., …, ..), .. = ., are the . .. ⊂ .. and the . .. ⊂ .. permuting the elements 1, 2, . , . only within the rows and within the columns of . respectively. Thus, . and ., where.. = (..., ..., …, ...) is the transposed Young diagram. For example, the standard filling

grovel 发表于 2025-3-27 13:13:18

https://doi.org/10.1007/978-3-8350-9279-2. = sgn(.) ⋅ . for all . ∈ ... The symmetric polynomials clearly form a subring of ., whereas the alternating polynomials form a module over this subring, since the product of symmetric and alternating polynomials is alternating.

appall 发表于 2025-3-27 14:43:01

http://reply.papertrans.cn/16/1525/152469/152469_35.png

municipality 发表于 2025-3-27 21:13:24

http://reply.papertrans.cn/16/1525/152469/152469_36.png

Evolve 发表于 2025-3-28 01:01:10

aculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study..978-3-319-84507-4978-3-319-50853-5

EXTOL 发表于 2025-3-28 03:59:22

Symmetric Functions,. = sgn(.) ⋅ . for all . ∈ ... The symmetric polynomials clearly form a subring of ., whereas the alternating polynomials form a module over this subring, since the product of symmetric and alternating polynomials is alternating.

accordance 发表于 2025-3-28 06:33:56

http://reply.papertrans.cn/16/1525/152469/152469_39.png

禁止 发表于 2025-3-28 13:56:33

http://reply.papertrans.cn/16/1525/152469/152469_40.png
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Algebra II; Textbook for Student Alexey L. Gorodentsev Textbook 2017 Springer International Publishing AG 2017 Fields.Rings.Modules.Groups.