mature 发表于 2025-3-21 18:18:13
书目名称Advances in Intelligent Data Analysis VIII影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0148494<br><br> <br><br>书目名称Advances in Intelligent Data Analysis VIII读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0148494<br><br> <br><br>FUME 发表于 2025-3-21 21:32:24
http://reply.papertrans.cn/15/1485/148494/148494_2.pngElectrolysis 发表于 2025-3-22 02:13:18
978-3-642-03914-0Springer-Verlag Berlin Heidelberg 2009Spinal-Fusion 发表于 2025-3-22 07:41:56
http://reply.papertrans.cn/15/1485/148494/148494_4.png天然热喷泉 发表于 2025-3-22 12:31:37
Petteri Kaski,Patric R.J. Östergårdrely random configurations, is a powerful method to unravel their underlying interactions. I study here the spatial organization of retail commercial activities. From pure location data, network analysis leads to a community structure that closely follows the commercial classification of the US Depa漂浮 发表于 2025-3-22 13:26:37
Petteri Kaski,Patric R.J. Östergård multi-dimensional data streams. We use relative entropy, also known as the Kullback-Leibler distance, to measure the statistical distance between two distributions. In the context of a multi-dimensional data stream, the distributions are generated by data from two sliding windows. We maintain a sam断断续续 发表于 2025-3-22 17:10:18
http://reply.papertrans.cn/15/1485/148494/148494_7.png的染料 发表于 2025-3-22 22:32:23
Definitions and Basic Properties,hich are then scaled separately. The MDS items can be split into sub-problems using demographic variables in order to choose the sections of the data with optimal and sub-optimal mappings. The lower dimensional solutions from the scaled sub-problems are recombined by taking sample points from each s失误 发表于 2025-3-23 01:24:58
Easily Reconstructable Functions,in an optimal clustering for the considered data. The clustering aggregation concept tries to bypass this problem by generating a set of separate, heterogeneous partitionings of the same data set, from which an aggregate clustering is derived. As of now, almost every existing aggregation approach coPander 发表于 2025-3-23 07:06:35
Martin Holeňa,Petr Pulc,Martin Kopp the human perception of time series. A time series and its translated copy appear dissimilar under the Euclidean distance (because the comparison is made pointwise), whereas a human would perceive both series as similar. As the human perception is tolerant to translational effects, using the cross