hearken 发表于 2025-3-21 17:05:55

书目名称Accelerated Optimization for Machine Learning影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0143623<br><br>        <br><br>书目名称Accelerated Optimization for Machine Learning读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0143623<br><br>        <br><br>

不持续就爆 发表于 2025-3-21 23:37:59

Are the Results Robust and Still Valid?, when the high order derivative is Lipschitz continuous. This chapter also provides the smoothing technique for nonsmooth problems, the restart technique for non-strongly convex problems and the explanation of the mechanism of acceleration from the variational perspective.

chapel 发表于 2025-3-22 00:25:24

http://reply.papertrans.cn/15/1437/143623/143623_3.png

obnoxious 发表于 2025-3-22 06:11:07

Alessandro Carretta,Gianluca Mattarocciction and Catalyst. For the nonconvex problems, we introduce a method named SPIDER. For the constrained problems, we introduce the accelerated stochastic ADMM. For the infinite case, we show that the momentum technique can enlarge the mini-batch size.

osculate 发表于 2025-3-22 09:47:49

http://reply.papertrans.cn/15/1437/143623/143623_5.png

正论 发表于 2025-3-22 14:11:12

gben Xu, and Zhi-Quan Luo, and written by experts on machine.This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mai

magenta 发表于 2025-3-22 18:20:27

Gianni Nicolini,Ekaterina Dorodnykhhe centralized topology and decentralized topology. For both topologies, we introduce the communication-efficient accelerated stochastic dual coordinate ascent. Specially, we concentrate on the stochastic variant, where at each iteration only parts of samples are used in each agent.

PANT 发表于 2025-3-22 21:29:05

http://reply.papertrans.cn/15/1437/143623/143623_8.png

Indolent 发表于 2025-3-23 02:58:37

Accelerated Algorithms for Unconstrained Convex Optimization,des II. Bandes aufgestellten Sätze unmittelbar anzuwenden, weil es sich hier ja um starre Körper handelt. Die so erhaltenen Differentialgleichungen in Verbindung mit den Bedingungsgleichungen der Bewegungen der Verbindung bestimmen sowohl die Koordinaten als Funktionen der Zeit, als auch die inneren

愤世嫉俗者 发表于 2025-3-23 08:01:00

book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time..978-981-15-2912-2978-981-15-2910-8
页: [1] 2 3 4 5
查看完整版本: Titlebook: Accelerated Optimization for Machine Learning; First-Order Algorith Zhouchen Lin,Huan Li,Cong Fang Book 2020 Springer Nature Singapore Pte