我在争斗志 发表于 2025-3-21 18:19:05
书目名称A Nonlinear Transfer Technique for Renorming影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0141605<br><br> <br><br>书目名称A Nonlinear Transfer Technique for Renorming读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0141605<br><br> <br><br>毛细血管 发表于 2025-3-21 22:11:37
Lecture Notes in Mathematicshttp://image.papertrans.cn/a/image/141605.jpgconvulsion 发表于 2025-3-22 02:38:53
https://doi.org/10.1007/978-3-642-32557-1 nevertheless the main contribution are presented in 2.4–2.7 and our main tool will be Theorem 2.32. An important concept will be the .-continuity of a map Φ from a topological space . into a metric space .. The .-continuity property is an extension of continuity suitable to deal with countable deco迅速飞过 发表于 2025-3-22 04:51:35
http://reply.papertrans.cn/15/1417/141605/141605_4.pngapropos 发表于 2025-3-22 09:24:54
http://reply.papertrans.cn/15/1417/141605/141605_5.png良心 发表于 2025-3-22 16:52:52
http://reply.papertrans.cn/15/1417/141605/141605_6.pngintercede 发表于 2025-3-22 20:45:17
http://reply.papertrans.cn/15/1417/141605/141605_7.png抗体 发表于 2025-3-23 00:18:33
http://reply.papertrans.cn/15/1417/141605/141605_8.png冰河期 发表于 2025-3-23 01:28:20
Radiative Transfer and Heat Conduction,Renorming in Banach space theory involves finding isomorphisms which improve the norm. That means making the geometrical and topological properties of the unit ball of a given Banach space as close as possible to those of the unit ball in a Hilbert space.宽容 发表于 2025-3-23 07:26:19
https://doi.org/10.1007/978-3-031-02536-5All examples of .-slicely continuous maps are connected somehow with LUR Banach spaces. It is clear that if x is a denting point of a set . and Φ is a norm continuous map at x then Φ is slicely continuous at x. Hence if . is a LUR normed space then every norm continuous map Φ on .. is slicely continuous on ...