Localized 发表于 2025-3-21 17:46:29

书目名称Wittrings影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK1030006<br><br>        <br><br>书目名称Wittrings读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK1030006<br><br>        <br><br>

Offbeat 发表于 2025-3-21 20:33:13

http://reply.papertrans.cn/104/10301/1030006/1030006_2.png

animated 发表于 2025-3-22 03:28:48

http://reply.papertrans.cn/104/10301/1030006/1030006_3.png

类人猿 发表于 2025-3-22 06:45:48

Basic facts about symmetric bilinear forms, and definition of the Witt ring,iled discussion the reader should consult , , , . We will often restrict ourselves to fields with characteristic different from two. Remarks concerning peculiarities of the characteristic two case will be marked by an asterisk.

Favorable 发表于 2025-3-22 12:13:41

The structure of Witt rings,f the group ring ℤ, where Q(F) denotes the group F*/F*. of square classes of the field F, we deduce the structure theorems purely ring-theoretically. Thus the results obtained by this way apply to a wider class of rings, which we call “abstract Witt rings”, and not only to Witt rings of symmet

pacifist 发表于 2025-3-22 13:14:27

http://reply.papertrans.cn/104/10301/1030006/1030006_6.png

橡子 发表于 2025-3-22 19:27:30

The structure of Witt rings,ric bilinear forms over fields (cf. ). The main theorems about the structure of Witt rings of fields have been proved by Pfister , Leicht-Lorenz and Harrison . Most of the following can be found in a more general setting in .

接触 发表于 2025-3-22 22:54:27

http://reply.papertrans.cn/104/10301/1030006/1030006_8.png

不愿 发表于 2025-3-23 04:05:56

http://reply.papertrans.cn/104/10301/1030006/1030006_9.png

危险 发表于 2025-3-23 06:40:09

http://reply.papertrans.cn/104/10301/1030006/1030006_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Wittrings; Manfred Knebusch,Manfred Kolster Book 1982 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1982 Algebra.Approximati