concord 发表于 2025-3-21 19:17:03
书目名称Vorlesungen über Pharmakologie der Haut影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0984842<br><br> <br><br>书目名称Vorlesungen über Pharmakologie der Haut读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0984842<br><br> <br><br>HALL 发表于 2025-3-21 23:55:22
Friedrich Luithlendetection in both business documents and technical articles. By training with .-13., we demonstrate the feasibility of a single solution that can report superior performance compared to the equivalent ones trained with a much larger amount of data, for table detection. We hope that our dataset helps暗讽 发表于 2025-3-22 02:03:18
http://reply.papertrans.cn/99/9849/984842/984842_3.png热情赞扬 发表于 2025-3-22 07:09:54
Friedrich Luithlenension but also heavy weight writer specific parameter fixation logic. In this manuscript, we propose an efficient and light weight OSV model for resource-constrained mobile devices. Our approach employs dimensionality reduction based on DBSCAN clustering technique and user specific parameter select使尴尬 发表于 2025-3-22 08:47:43
http://reply.papertrans.cn/99/9849/984842/984842_5.png宽敞 发表于 2025-3-22 16:40:53
Friedrich Luithlenthe added reference points are small, their positions can be predicted more precisely, leading to higher center-line detection accuracy. Consequently, our DQ-DETR achieves state-of-the-art performance on five public text detection benchmarks, including MLT2017, Total-Text, CTW1500, ArT and DAST1500.凝乳 发表于 2025-3-22 17:50:53
Friedrich Luithlenly updated using the student model. Finally, it is used to evaluate. We term the framework Incremental Teacher Model. The proposed framework was applied to four architectures of distinct handwriting recognizers. For almost every architecture, the recognizer trained by our method outperforms those tr维持 发表于 2025-3-22 23:43:05
Friedrich Luithlenford, SCUT, SCUT-EnsText and ICDAR2013 datasets, TPFNet outperforms recent networks on nearly all the metrics. E.g., on Oxford dataset, TPFNet has a PSNR (higher is better) of 44.2 and a text-detection precision (lower is better) of 39.0, compared to MTRNet++’s PSNR of 33.7 and precision of 50.4. Th的阐明 发表于 2025-3-23 04:00:21
http://reply.papertrans.cn/99/9849/984842/984842_9.png牵索 发表于 2025-3-23 05:40:13
http://reply.papertrans.cn/99/9849/984842/984842_10.png