purulent 发表于 2025-3-21 16:43:12
书目名称Von Karman Evolution Equations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0984493<br><br> <br><br>书目名称Von Karman Evolution Equations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0984493<br><br> <br><br>Orgasm 发表于 2025-3-21 21:39:05
http://reply.papertrans.cn/99/9845/984493/984493_2.png推测 发表于 2025-3-22 02:43:32
Thermoelasticitythe attractor with respect to the parameters . and .. In the case . → 0 we show that the attractor is close in some sense to the attractor of an isothermal structurally damped von Karman model. In this chapter we mainly follow .Concrete 发表于 2025-3-22 06:47:13
Inertial Manifolds for von Karman Plate Equationswidely studied for deterministic systems by many authors. All known results concerning existence of inertial manifolds require some gap condition on the spectrum of the linearized problem (see, e.g., and the references therein). Although inertial manifolds have been m怕失去钱 发表于 2025-3-22 09:05:26
http://reply.papertrans.cn/99/9845/984493/984493_5.png不妥协 发表于 2025-3-22 16:58:16
http://reply.papertrans.cn/99/9845/984493/984493_6.png六个才偏离 发表于 2025-3-22 20:37:12
Plates with Internal Dampingthe model are either clamped, hinged or else “free”. In this latter case, the boundary conditions may involve naturally both dynamic and nonlinear terms. The well-posedness of solutions to the models considered follows from the results presented in Chapter 3, for models with rotational forces and in Chapter 4, for nonrotational models.calamity 发表于 2025-3-22 23:39:46
http://reply.papertrans.cn/99/9845/984493/984493_8.pngfluffy 发表于 2025-3-23 04:03:50
Von Karman Evolution Equations978-0-387-87712-9Series ISSN 1439-7382 Series E-ISSN 2196-9922olfction 发表于 2025-3-23 07:04:23
http://reply.papertrans.cn/99/9845/984493/984493_10.png