dapper 发表于 2025-3-28 15:30:00
Kernel-Based Morphometry of Diffusion Tensor Imageshe population is unknown and could be non-linear, further complicating the group-based statistical analysis. This chapter gives a perspective on performing voxel-wise morphometry of tensor data using kernel-based approach. The method is referred as Kernel-based morphometry (KBM) as it models the ten单调性 发表于 2025-3-28 20:25:59
http://reply.papertrans.cn/99/9839/983847/983847_42.pngmyelography 发表于 2025-3-29 01:21:32
Conference proceedings 2014ghted MRI..Part III, Higher Order Tensors and Riemannian-Finsler Geometry, offers powerful mathematical language to model and analyze large and complex diffusion data such as High Angular Resolution Diffusion Imaging (HARDI) and Diffusion Kurtosis Imaging (DKI)..A Part entitled Tensor Signal Process结构 发表于 2025-3-29 05:16:05
http://reply.papertrans.cn/99/9839/983847/983847_44.pngFlustered 发表于 2025-3-29 09:55:02
http://reply.papertrans.cn/99/9839/983847/983847_45.pngConfound 发表于 2025-3-29 12:03:44
Madhura Ingalhalikar,Parmeshwar Khurd,Ragini Verma处理 发表于 2025-3-29 19:28:31
Ofer Pasternak,Klaus Maier-Hein,Christian Baumgartner,Martha E. Shenton,Yogesh Rathi,Carl-Fredrik WeCulmination 发表于 2025-3-29 22:37:01
http://reply.papertrans.cn/99/9839/983847/983847_48.pnglipids 发表于 2025-3-30 01:49:26
http://reply.papertrans.cn/99/9839/983847/983847_49.pngCOLON 发表于 2025-3-30 04:58:48
http://reply.papertrans.cn/99/9839/983847/983847_50.png