遮阳伞 发表于 2025-3-21 16:49:06
书目名称Visual Group Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0983728<br><br> <br><br>书目名称Visual Group Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0983728<br><br> <br><br>BOAST 发表于 2025-3-21 21:38:58
http://reply.papertrans.cn/99/9838/983728/983728_2.pngexceed 发表于 2025-3-22 03:32:45
http://reply.papertrans.cn/99/9838/983728/983728_3.png大门在汇总 发表于 2025-3-22 06:19:45
http://reply.papertrans.cn/99/9838/983728/983728_4.png浮雕宝石 发表于 2025-3-22 11:34:01
http://reply.papertrans.cn/99/9838/983728/983728_5.pngexpansive 发表于 2025-3-22 16:25:22
Stephan Rosebrockssner effect. As will be mentioned later, the perfect diamagnetism is broken at suffi- ciently high magnetic fields. There are two alternative ways in which this break down can take place depending on whether the superconductor is “type-1” or “type-2.” In type-2 materials the superconductivity can bGraphite 发表于 2025-3-22 17:51:10
http://reply.papertrans.cn/99/9838/983728/983728_7.pngd-limonene 发表于 2025-3-22 21:12:24
http://reply.papertrans.cn/99/9838/983728/983728_8.pnghyperuricemia 发表于 2025-3-23 03:27:05
Introduction to Euclidean Geometry,dition, such maps are composed so that we can calculate with them. Additionally, we prove a few theorems of Euclidean geometry that clarify the structure of the Euclidean plane and higher-dimensional spaces. We want to understand geometry here in a way that allows us to grasp it algebraically.擦掉 发表于 2025-3-23 08:59:15
Introduction to Groups,learn the first important properties of groups and how we can “generate” a group by using only a few elements. We thus answer questions like: . Then we study the groups generated by one element. We look a little more closely at all the symmetries of the tetrahedron towards the end of this chapter.