Conclave 发表于 2025-3-25 03:40:25

http://image.papertrans.cn/v/image/980981.jpg

Herpetologist 发表于 2025-3-25 10:57:11

https://doi.org/10.1007/978-3-8348-9672-8Analysis; Differenzialgleichung; Elektrodynamik; Flächen; Geometrie; Kurven; Lie-Gruppen; Mechanik

CAMEO 发表于 2025-3-25 14:36:13

Elemente der multilinearen Algebra,Wir betrachten einen .-dimensionalen Vektorraum über dem Körper . der reellen oder komplexen Zahlen. Der Dualraum .* besteht bekanntlich aus allen linearen Abbildungen von . nach ..

Friction 发表于 2025-3-25 16:42:04

Pfaffsche Systeme,Sind ., …, . : . → . glatte Funktionen mit linear unabhängigen Differentialen, so werden durch die Gleichungen

FAST 发表于 2025-3-25 20:56:39

,Kurven und Flächen im dreidimensionalen Raum,Der Kurvenbegriff im dreidimensionalen Raum . ist so einfach nicht, wie es auf den ersten Blick den Anschein haben könnte. Lange Zeit ging man im 19. Jahrhundert davon aus, es handle sich um eine Teilmenge . ⊂ ., welche sich stetig vermittels eines reellen Parameters beschreiben lässt.

DEBT 发表于 2025-3-26 00:35:48

http://reply.papertrans.cn/99/9810/980981/980981_26.png

人工制品 发表于 2025-3-26 05:10:32

http://reply.papertrans.cn/99/9810/980981/980981_27.png

Eulogy 发表于 2025-3-26 11:38:59

978-3-8348-1016-8Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 2010

CANON 发表于 2025-3-26 16:34:32

,Lie-Gruppen und homogene Räume,haupt erst ermöglichen. In der Tat bildete sich ab den siebziger Jahren des 19. Jahrhunderts die Überzeugung heraus, dass das ordnende Prinzip der Geometrie das Studium ihrer Symmetriegruppe sein sollte.

同步左右 发表于 2025-3-26 18:05:24

Elemente der statistischen Mechanik und Thermodynamik,n Struktur. Ein Zustand des betrachteten mechanischen Systems ist ein Punkt im Phasenraum .*. und die Bewegung der Zustände sind die Integralkurven des symplektischen Gradienten s-grad(.) einer Hamilton-Funktion . : .*. → ..
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Vektoranalysis; Differentialformen i Ilka Agricola,Thomas Friedrich Textbook 2010Latest edition Vieweg+Teubner Verlag | Springer Fachmedien