SPIR 发表于 2025-3-21 19:05:14

书目名称Vector Measures, Integration and Related Topics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0980839<br><br>        <br><br>书目名称Vector Measures, Integration and Related Topics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0980839<br><br>        <br><br>

清楚 发表于 2025-3-21 23:20:51

Fourier Series in Banach spaces and Maximal Regularity,em and give applications to differential equations. In particular, we characterize maximal regularity (in a slightly different version than the usual one) by .-sectoriality. Applications to non-autonomous problems are indicated.

extinguish 发表于 2025-3-22 03:30:18

On Vector Measures, Uniform Integrability and Orlicz Spaces,..(μ). We also provide a characterization of the Pettis integral of Dunford integrable functions by mean of weak compactness in separable Orlicz spaces and give a necessary and sufficient condition for the uniform integrability of {.∈..}, whenever .:Ω→.* is Gel’fand integrable.

Enteropathic 发表于 2025-3-22 06:40:00

Spaces of Operator-valued Functions Measurable with Respect to the Strong Operator Topology,e show that functions in ../μ; ℒ(.)] define operator-valued measures with bounded .-variation and use these spaces to obtain an isometric characterization of the space of all ℒ(.)-valued multipliers acting boundedly from ..(μ; .) into ..(μ; .), 1≤.<.<∞.

Fester 发表于 2025-3-22 10:44:53

A Decomposition of Henstock-Kurzweil-Pettis Integrable Multifunctions, same result can be achieved in case of an arbitrary Banach space. Applying the representation theorem we describe the multipliers of the Henstock-Kurzweil-Pettis integrable multifunctions. Then we use this description to obtain a characterization of the Henstock-Kurzweil-Pettis integrability in terms of subadditive operators.

intricacy 发表于 2025-3-22 15:35:49

Fourier Series in Banach spaces and Maximal Regularity,..(0, 2π; .) converges unconditionally if and only if .=2 and . is a Hilbert space. For operator-valued multipliers we present the Marcinkiewicz theorem and give applications to differential equations. In particular, we characterize maximal regularity (in a slightly different version than the usual

哭得清醒了 发表于 2025-3-22 17:52:24

http://reply.papertrans.cn/99/9809/980839/980839_7.png

反话 发表于 2025-3-22 23:37:26

http://reply.papertrans.cn/99/9809/980839/980839_8.png

Limited 发表于 2025-3-23 04:31:18

http://reply.papertrans.cn/99/9809/980839/980839_9.png

Paraplegia 发表于 2025-3-23 07:35:20

How Summable are Rademacher Series?, the extension of this result to the setting of rearrangement invariant spaces. The space .. of functions having square exponential integrability plays a prominent role in this problem..Another way of gauging the summability of Rademacher series is considering the . of the Rademacher series in a rea
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Vector Measures, Integration and Related Topics; Guillermo P. Curbera,Gerd Mockenhaupt,Werner J. Ri Conference proceedings 2010 Birkhäuser