Chipmunk 发表于 2025-3-23 11:06:03
des wissenschaftlichen Lebens zu seinen Gästen. Die verschiedenen Ausschüsse der Akademie hielten gern ihre Sitzungen statt in den Räumen der Akademie in der Wohnung Lavoisiers ab, um so lieber, da die Sitzungen zumeist durch ein Mahl unterbrochen wurden. Und die Küche Madame Lavoisiers hatte einenArrhythmia 发表于 2025-3-23 16:57:55
http://reply.papertrans.cn/99/9807/980626/980626_12.pngNonporous 发表于 2025-3-23 19:57:49
https://doi.org/10.1007/978-1-4419-8758-7Eigenvalue; Mathematica; Volume; equality; inequality; mechanics; online; time; partial differential equatioFlustered 发表于 2025-3-24 02:15:38
Springer-Verlag US 2003Accord 发表于 2025-3-24 04:26:37
http://reply.papertrans.cn/99/9807/980626/980626_15.png分贝 发表于 2025-3-24 09:20:57
Elliptic Unilateral Problems, closed convex subset of a real reflexive Banach space, (., τ, μ) denotes a positive complete measure space, .: . × ℝ. → ℝ is a function satisfying suitable conditions like (3.10.1), (3.10.2a) or (3.10.1), (3.10.2b), (3.10.2c) and Φ is a convex and l.s.c. function such that . ⋂ D(Φ) ≠ Ø.取之不竭 发表于 2025-3-24 14:25:54
Hyperbolic Unilateral Problems,erkin method and the Minimax method respectively. This Chapter relies primarily on the works of Bernardi and Pozzi , Brézis , Goeleven, Miettinen and Panagiotopoulos , Goeleven and Motreanu and Panagiotopoulos .Limited 发表于 2025-3-24 16:20:18
Unilateral Eigenvalue Problems,ities and hemivariational inequalities. The study of unilateral eigenvalue problems has been originated by Benci and Micheletti , Benci , Beira da Veiga , Do , , Kucera, Necas and Sucek , Naumann and WenkAsymptomatic 发表于 2025-3-24 21:36:07
http://reply.papertrans.cn/99/9807/980626/980626_19.png衣服 发表于 2025-3-25 00:07:13
Elliptic Unilateral Problems, closed convex subset of a real reflexive Banach space, (., τ, μ) denotes a positive complete measure space, .: . × ℝ. → ℝ is a function satisfying suitable conditions like (3.10.1), (3.10.2a) or (3.10.1), (3.10.2b), (3.10.2c) and Φ is a convex and l.s.c. function such that . ⋂ D(Φ) ≠ Ø.