DUMMY 发表于 2025-3-21 17:53:43
书目名称Vanishing and Finiteness Results in Geometric Analysis影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0980485<br><br> <br><br>书目名称Vanishing and Finiteness Results in Geometric Analysis读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0980485<br><br> <br><br>教义 发表于 2025-3-21 23:45:38
http://reply.papertrans.cn/99/9805/980485/980485_2.pngIge326 发表于 2025-3-22 02:33:09
http://reply.papertrans.cn/99/9805/980485/980485_3.pngLibido 发表于 2025-3-22 06:34:44
http://reply.papertrans.cn/99/9805/980485/980485_4.png整洁漂亮 发表于 2025-3-22 09:39:05
Vanishing results, constancy of harmonic maps, the topology at infinity of submanifolds, the .-cohomology, and the structure and rigidity of Riemannian and Kählerian manifolds (see Sections 6.1, 7.4, 7.5, 7.6, 8.1, and Appendix B).PALMY 发表于 2025-3-22 16:00:13
A finite-dimensionality result,tion . is the norm of the section of a suitable vector bundle. In appropriate circumstances, the theorem guarantees that certain vector subspaces of such sections are trivial, the main geometric assumption being the existence of a positive solution . of the differential inequality . where .(.) is a背叛者 发表于 2025-3-22 19:25:56
Applications to harmonic maps,rem which compares with classical work by Schoen and Yau, . Direct inspection shows that our result, emphasizing the role of a suitable Schrödinger operator related to the Ricci curvature of the domain manifold, unifies in a single statement the situations considered in ; see Remark 6.22 b留恋 发表于 2025-3-22 22:32:10
http://reply.papertrans.cn/99/9805/980485/980485_8.pngAnalogy 发表于 2025-3-23 03:07:32
A finite-dimensionality result,uch sections are trivial, the main geometric assumption being the existence of a positive solution . of the differential inequality . where .(.) is a lower bound for the relevant curvature term. According to Lemma 3.10 this amounts to requiring that the bottom of the spectrum of the Schrödinger operator −Δ − .(.) is non-negative.表示向下 发表于 2025-3-23 08:09:17
http://reply.papertrans.cn/99/9805/980485/980485_10.png