GERM
发表于 2025-3-21 16:22:16
书目名称Vanishing Theorems on Complex Manifolds影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0980484<br><br> <br><br>书目名称Vanishing Theorems on Complex Manifolds读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0980484<br><br> <br><br>
预知
发表于 2025-3-21 20:59:23
Kodaira-Nakano Vanishing Theorems,Throughout this chapter, we let X be an n-dimensional compact Kähler manifold, and we let V be a holomorphic vector bundle on X. We shall henceforth let V also denote the locally free sheaf ..(V) of germs of holomorphic sections of the vector bundle V.
WAX
发表于 2025-3-22 01:31:04
http://reply.papertrans.cn/99/9805/980484/980484_3.png
鼓掌
发表于 2025-3-22 06:54:28
Progress in Mathematicshttp://image.papertrans.cn/v/image/980484.jpg
CAB
发表于 2025-3-22 12:29:27
https://doi.org/10.1007/978-1-4899-6680-3boundary element method; manifold; theorem
Ganglion-Cyst
发表于 2025-3-22 15:22:27
http://reply.papertrans.cn/99/9805/980484/980484_6.png
EVICT
发表于 2025-3-22 18:40:06
Vanishing Theorems on Complex Manifolds978-1-4899-6680-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
flimsy
发表于 2025-3-22 23:20:11
http://reply.papertrans.cn/99/9805/980484/980484_8.png
侵略
发表于 2025-3-23 03:42:38
http://reply.papertrans.cn/99/9805/980484/980484_9.png
反复拉紧
发表于 2025-3-23 07:23:38
Vector Bundles: Ampleness,h we discuss in Chapter VI, is the differential-geometric approach of Nakano and Griffiths that directly uses the Kodaira-Nakano identity. In this chapter, we discuss the other method, which is based on the concept of ampleness due to Grothendieck, Grauert, and Hartshorne and yields the vanishing theorem of Le Potier.