烹饪 发表于 2025-3-21 19:09:59
书目名称Ubiquitous Security影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0940263<br><br> <br><br>书目名称Ubiquitous Security读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0940263<br><br> <br><br>生来 发表于 2025-3-21 20:53:30
http://reply.papertrans.cn/95/9403/940263/940263_2.pngEPT 发表于 2025-3-22 03:40:20
http://reply.papertrans.cn/95/9403/940263/940263_3.png经典 发表于 2025-3-22 04:50:42
A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Langimitations. Furthermore, we summarize future defenses against these attacks. We also examine real-world techniques, including reported and our implemented attacks on LLMs, to consolidate our findings. Our research highlights the urgency of addressing security concerns and aims to enhance the underst名字 发表于 2025-3-22 11:02:49
http://reply.papertrans.cn/95/9403/940263/940263_5.pngLeisureliness 发表于 2025-3-22 14:33:18
http://reply.papertrans.cn/95/9403/940263/940263_6.pngNADIR 发表于 2025-3-22 18:42:12
http://reply.papertrans.cn/95/9403/940263/940263_7.pngplasma-cells 发表于 2025-3-22 22:39:01
http://reply.papertrans.cn/95/9403/940263/940263_8.pngPalpitation 发表于 2025-3-23 01:29:08
http://reply.papertrans.cn/95/9403/940263/940263_9.pngpatriarch 发表于 2025-3-23 06:44:37
Multi-NetDroid: Multi-layer Perceptron Neural Network for Android Malware Detection four dense layers for training and classification of malware or benign applications and is evaluated as an improved classifier for Android malware detection. To evaluate our model performance we experimented with two separate datasets (Drebin-215 and Malgenome-15), and our model achieved 99.19% and