Aggrief 发表于 2025-3-21 18:00:55
书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0916053<br><br> <br><br>书目名称The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0916053<br><br> <br><br>GULLY 发表于 2025-3-21 22:01:51
Book 2019 and four contain a highly readable proof of this result, featuring new improvements as well. Researchers in mathematical fluid mechanics, as well as those working in partial differential equations more generally, will find this monograph invaluable..PAC 发表于 2025-3-22 03:52:23
http://reply.papertrans.cn/92/9161/916053/916053_3.pngMILK 发表于 2025-3-22 07:24:34
Advances in Mathematical Fluid Mechanicshttp://image.papertrans.cn/t/image/916053.jpgoverreach 发表于 2025-3-22 09:48:37
http://reply.papertrans.cn/92/9161/916053/916053_5.png反复无常 发表于 2025-3-22 14:31:06
http://reply.papertrans.cn/92/9161/916053/916053_6.png纵火 发表于 2025-3-22 17:16:17
The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness978-3-030-26661-5Series ISSN 2297-0320 Series E-ISSN 2297-0339顽固 发表于 2025-3-23 01:15:00
Wojciech S. OżańskiProvides a simple proof of the classical Caffarelli-Kohn-Nirenberg theorem with brevity and completeness.Promotes understanding of Scheffer’s constructions by providing streamlined proofs based on hiscreatine-kinase 发表于 2025-3-23 04:33:36
http://reply.papertrans.cn/92/9161/916053/916053_9.png发牢骚 发表于 2025-3-23 09:06:13
http://reply.papertrans.cn/92/9161/916053/916053_10.png