Abeyance 发表于 2025-3-21 18:44:51
书目名称Séminaire de Théorie des Nombres, Paris 1985–86影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0885339<br><br> <br><br>书目名称Séminaire de Théorie des Nombres, Paris 1985–86读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0885339<br><br> <br><br>我的巨大 发表于 2025-3-21 23:30:29
Poincare Series, Kloosterman Sums, Trace Formulas, and Automorphic Forms for GL(n),ums for SL(3,.)”, Acta Arithmetica, to appear). In this paper they are studied for arbitrary n..First, in an expository section, the GL(2) case is reviewed in detail. In particular, Poincaré series for GL(2) are defined, their Fourier and spectral expansions are given, the Kloosterman zeta function不怕任性 发表于 2025-3-22 04:08:29
Some Recent Results on Complex Powers and Zeta Distributions,owers and their functional equations”. We have tried to state definitions precisely and results concisely. We have included some remarks not stated elsewhere. As we emphasized in the talk, a problem of Weil is the underlying theme.符合规定 发表于 2025-3-22 05:19:37
Survey of the Proof of the Tate Conjectures for Hilbert-Blumenthal Surfaces,most cases by Harder, Langlands and Rapoport in their fundamental paper . The remaining cases are covered by my thesis . Recently Ramakrishnan and Murty gave a different proof for these remaining cases in their paper . For more information on Hilbert-Blumenthal surfaces, especially on themiscreant 发表于 2025-3-22 11:51:25
http://reply.papertrans.cn/89/8854/885339/885339_5.png解决 发表于 2025-3-22 13:57:57
,Approximants de Padé et mesures effectives d’irrationalité,es des valeurs de ces fonctions. Cette méthode puissante a donné des résultats rappelés au paragraphe 3. Nous montrerons au paragraphe 4 comment les approximants de Padé peuvent être remplacés par d’autres polynômes qui fournissent de meilleures mesures d’irrationalité, améliorant certains résultats空中 发表于 2025-3-22 20:14:33
Descents on Elliptic Curves with Complex Multiplication,at some prime(s) p, to determine the Selmer group of E relative to p (or powers of p). There is a finite algorithm for carrying out such a descent, but with few exceptions (see for examples with p=2 and , for some with p=3) this algorithm is completely impractical in actual examples.肉身 发表于 2025-3-23 00:07:57
Modular Forms on Noncongruence Subgroups,e fundamental paper of Atkin and Swinnerton-Dyer . Considering how much we know about congruence subgroups and the associated modular forms, it is remarkable how little we can say in the general case (to avoid cumbersome language I shall speak of “congruence modular forms” and “noncongruence modu杀菌剂 发表于 2025-3-23 04:11:19
http://reply.papertrans.cn/89/8854/885339/885339_9.pngjettison 发表于 2025-3-23 09:12:05
Survey of the Proof of the Tate Conjectures for Hilbert-Blumenthal Surfaces,and Murty gave a different proof for these remaining cases in their paper . For more information on Hilbert-Blumenthal surfaces, especially on the Beilinson conjectures, I recommend the excellent survey article of Ramakrishnan . I would like to thank Professor G. Henniart very much for inviting me to this seminar.